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Hamiltonian Systems on Linear
Symplectic Spaces

A natural arena for Hamiltonian mechanics is a symplectic or Poisson mani-
fold. The first chapters concentrate on the symplectic case while Chapter 10
introduces the Poisson case. The symplectic context focuses on the sym-
plectic two-form

∑
dqi ∧ dpi and its infinite-dimensional analogues, while

the Poisson context looks at the Poisson bracket as the fundamental ob-
ject. To facilitate the understanding of a number of points, we begin this
chapter with the theory in linear spaces. This linear setting is already ad-
equate for a number of interesting examples such as the wave equation
and Schrödinger’s equation. Later in Chapter 4 we make the transition
to manifolds and in Chapters 7 and 8 we study the basics of Lagrangian
mechanics.

2.1 Introduction

To motivate the introduction of symplectic geometry in mechanics, we
briefly recall from §1.1 the classical transition from Newton’s second law to
the Lagrange and Hamilton equations. Newton’s Second Law for a parti-
cle moving in Euclidean three-space R3, under the influence of a potential
energy V (q), is

F = ma, (2.1.1)

where q ∈ R3, F(q) = −∇V (q) is the force , m is the mass of the particle,
and a = d2q/dt2 is the acceleration (assuming we start in a postulated
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privileged coordinate frame called an inertial frame).1 The potential en-
ergy V is introduced through the notion of work and the assumption that
the force field is conservative. The introduction of the kinetic energy

K =
1
2
m

∥∥∥∥dqdt
∥∥∥∥2

is through the power , or rate of work equation :
dK

dt
= m 〈q̇, q̈〉 = 〈q̇,F〉 ,

where 〈 , 〉 denotes the inner product on R3.
The Lagrangian is defined by

L(qi, q̇i) =
m

2
‖q̇‖2 − V (q) (2.1.2)

and one checks by direct calculation that Newton’s second law is equivalent
to the Euler–Lagrange equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, (2.1.3)

which are second-order differential equations in qi; the equations (2.1.3) are
worthy of independent study for a general L since they are the equations
for stationary values of the action integral :

δ

∫ t2

t1

L(qi, q̇i) dt = 0 (2.1.4)

as will be detailed later. These variational principles play a fundamental
role throughout mechanics—both in particle mechanics and field theory.

It is easily verified that dE/dt = 0, where E is the total energy:

E =
1
2
m‖q̇‖2 + V (q).

Lagrange and Hamilton observed that it is convenient to introduce the
momentum pi = mq̇i and rewrite E as a function of pi and qi by letting

H(q,p) =
‖p‖2
2m

+ V (q), (2.1.5)

for then Newton’s second law is equivalent to Hamilton’s canonical
equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (2.1.6)

which is a first-order system in (q,p)-space, or phase space .

1Newton and subsequent workers in mechanics thought of this inertial frame as one
“fixed relative to the distant stars.” While this raises serious questions about what this
could really mean mathematically or physically, it remains a good starting point. Deeper
insight is found in Chapter 8 and in courses in general relativity.
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Matrix Notation. For a deeper understanding of Hamilton’s equations,
we recall some matrix notation (see Abraham, Marsden, and Ratiu [1988],
§5.1 for more details). Let E be a real vector space and E∗ its dual space.
Let e1, . . . , en be a basis of E with the associated dual basis for E∗ denoted
e1, . . . , en; that is, ei is defined by〈

ei, ej
〉

:= ei(ej) = δij ,

which equals 1 if i = j and 0 if i 6= j. Vectors v ∈ E are written v = viei
(a sum on i is understood) and covectors α ∈ E∗ as α = αie

i; vi and αi
are the components of v and α respectively.

If A : E → F is a linear transformation, its matrix relative to bases
e1, . . . , en of E and f1, . . . , fm of F is denoted Aji and is defined by

A(ei) = Ajifj , i.e., [A(v)]j = Ajiv
i. (2.1.7)

Thus, the columns of the matrix of A are A(e1), . . . , A(en); the upper index
is the row index and the lower index is the column index. For other linear
transformations, we place the indices in their corresponding places. For
example, if A : E∗ → F is a linear transformation, its matrix Aij satisfies
A(ej) = Aijfi, that is, [A(α)]i = Aijαj .

If B : E × F → R is a bilinear form, its matrix Bij is defined by

Bij = B(ei, fj); i.e., B(v, w) = viBijw
j . (2.1.8)

Define the associated linear map B[ : E → F ∗ by

B[(v)(w) = B(v, w)

and observe that B[(ei) = Bijf
j . Since B[(ei) is the ith column of the

matrix representing the linear map B[, it follows that the matrix of B[ in
the bases e1, . . . , en, f

1, . . . , fn is the transpose of Bij that is,

[B[]ji = Bij . (2.1.9)

Let Z denote the vector space of (q, p)’s and write z = (q, p). Let the
coordinates qj , pj be collectively denoted by zI , I = 1, . . . , 2n. One reason
for the notation z is that if one thinks of z as a complex variable z = q+ ip,
then Hamilton’s equations are equivalent to the following complex form of
Hamilton’s equations (see Exercise 2.1-1):

ż = −2i
∂H

∂z
. (2.1.10)

Symplectic and Poisson Structures. We can view Hamilton’s equa-
tions (2.1.6) as follows. Think of the operation

dH(z) =
(
∂H

∂qi
,
∂H

∂pi

)
7→
(
∂H

∂pi
,−∂H

∂qi

)
=: XH(z), (2.1.11)
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64 2.1 Introduction

which forms a vector field XH , called the Hamiltonian vector field ,
from the differential of H, as teh composition of the linear map

R : Z∗ → Z

with the differntial dH(z) of H. The matrix of R is

[RAB ] =
[

0 l
−l 0

]
=: J, (2.1.12)

where we write J for the specific matrix (2.1.12) sometimes called the sym-
plectic matrix . Thus,

XH(z) = R · dH(z) (2.1.13)

or, if the components of XH are denoted XI , I = 1, . . . , 2n,

XI = RIJ
∂H

∂zJ
, i.e., XH = J∇H (2.1.14)

where ∇H is the naive gradient of H; that is, the row vector dH but
regarded as a column vector.

Let B(α, β) = 〈α,R(β)〉 be the bilinear form associated to R, where 〈 , 〉
denotes the canonical pairing between Z∗ and Z. One calls either the bilin-
ear form B or its associated linear map R, the Poisson structure . The
classical Poisson bracket (consistent with what we defined in Chapter 1)
is defined by

{F,G} = B(dF,dG) = dF · J∇G. (2.1.15)

The symplectic structure Ω is the bilinear form associated to R−1 :
Z → Z∗, that is, Ω(v, w) =

〈
R−1(v), w

〉
or, equivalently, Ω[ = R−1. The

matrix of Ω is J in the sense that

Ω(v, w) = vT Jw. (2.1.16)

To unify notation we shall sometimes write

Ω for the symplectic form, Z × Z → R with matrix J,
Ω[ for the associated linear map, Z → Z∗ with matrix JT ,
Ω] for the inverse map (Ω[)−1 = R, Z∗ → Z with matrix J,
B for the Poisson form, Z∗ × Z∗ → R with matrix J .

Hamilton’s equations may be written

ż = XH(z) = Ω] dH(z). (2.1.17)

Multiplying both sides by Ω[, we get

Ω[XH(z) = dH(z). (2.1.18)
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2.2 Symplectic Forms on Vector Spaces 65

In terms of the symplectic form, (2.1.18) reads

Ω(XH(z), v) = dH(z) · v (2.1.19)

for all z, v ∈ Z.
Problems such as rigid body dynamics, quantum mechanics as a Hamil-

tonian system, and the motion of a particle in a rotating reference frame
motivate the need to generalize these concepts. We shall do this in sub-
sequent chapters and deal with both symplectic and Poisson structures in
due course.

Exercises

¦ Exercise 2.1-1. Write z = q + ip and show that Hamilton’s equations
are equivalent to

ż = −2i
∂H

∂z
.

Give a plausible definition of the right-hand side as part of your answer.

¦ Exercise 2.1-2. Write the harmonic oscillator mẍ+ kx = 0 in the form
of Euler–Lagrange equations, as Hamilton’s equations, and finally, in the
complex form (2.1.10).

¦ Exercise 2.1-3. Repeat Exercise 2.1-2 for mẍ+ kx+ αx3 = 0.

2.2 Symplectic Forms on Vector Spaces

Let Z be a real Banach space, possibly infinite dimensional, and let Ω :
Z × Z → R be a continuous bilinear form on Z. The form Ω is said to
be nondegenerate (or weakly nondegenerate) if Ω(z1, z2) = 0 for all
z2 ∈ Z implies z1 = 0. As in §2.1, the induced continuous linear mapping
Ω[ : Z → Z∗ is defined by

Ω[(z1)(z2) = Ω(z1, z2). (2.2.1)

Nondegeneracy of Ω is equivalent to injectivity of Ω[; that is, to the
condition “Ω[(z) = 0 implies z = 0.” The form Ω is said to be strongly
nondegenerate if Ω[ is an isomorphism, that is, Ω[ is onto as well as being
injective. The open mapping theorem guarantees that if Z is a Banach space
and Ω[ is one-to-one and onto, then its inverse is continuous. In most of
the infinite-dimensional examples discussed in this book Ω will be only
(weakly) nondegenerate.

A linear map between finite-dimensional spaces of the same dimension
is one-to-one if and only if it is onto. Hence, when Z is finite dimensional,
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66 2.2 Symplectic Forms on Vector Spaces

weak nondegeneracy and strong nondegeneracy are equivalent . If Z is finite
dimensional, the matrix elements of Ω relative to a basis {eI} are defined
by

ΩIJ = Ω(eI , eJ).

If {eJ} denotes the basis for Z∗ that is dual to {eI}, that is,
〈
eJ , eI

〉
= δJI

and if we write z = zIeI and w = wIeI , then

Ω(z, w) = zIΩIJwJ (sum over I, J).

Since the matrix of Ω[ relative to the bases {eI} and {eJ} equals the
transpose of the matrix of Ω relative to {eI}; that is (Ω[)JI = ΩIJ , nonde-
generacy is equivalent to det[ΩIJ ]6= 0. In particular, Z is even dimensional,
since the determinant of a skew-symmetric matrix with an odd number of
rows (and columns) is zero.

Definition 2.2.1. A symplectic form Ω on a vector space Z is a non-
degenerate skew-symmetric bilinear form on Z. The pair (Z,Ω) is called a
symplectic vector space. If Ω is strongly nondegenerate, (Z,Ω) is called
a strong symplectic vector space.

Examples

We now develop some basic examples of symplectic forms.

(a) Canonical Forms. Let W be a vector space, and let Z = W ×W ∗.
Define the canonical symplectic form Ω on Z by

Ω((w1, α1), (w2, α2)) = α2(w1)− α1(w2), (2.2.2)

where w1, w2 ∈W and α1, α2 ∈W ∗.
More generally, let W and W ′ be two vector spaces in duality, that is,

there is a weakly nondegenerate pairing 〈 , 〉 : W ′ × W → R. Then on
W ×W ′,

Ω((w1, α1), (w2, α2)) = 〈α2, w1〉 − 〈α1, w2〉 (2.2.3)

is a weak symplectic form. ¨

(b) The Space of Functions. Let F(R3) be the space of smooth func-
tions ϕ : R3 → R, and let Denc(R3) be the space of smooth densities on
R3 with compact support. We write a density π ∈ Denc(R3) as a function
π′ ∈ F(R3) with compact support times the volume element d3x on R3

as π = π′ d3x. The spaces F and Denc are in weak nondegenerate dual-
ity by the pairing 〈ϕ, π〉 =

∫
ϕπ′ d3x. Therefore, from (2.2.3), we get the

symplectic form Ω on the vector space Z = F(R3)×Denc(R3):

Ω((ϕ1, π1), (ϕ2, π2)) =
∫
R3
ϕ1π2 −

∫
R3
ϕ2π1. (2.2.4)
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We choose densities with compact support so that the integrals in this
formula will be finite. Other choices of spaces could be used as well. ¨

(c) Finite-Dimensional Canonical Form. Suppose that W is a real
vector space of dimension n. Let {ei} be a basis of W , and let {ei} be the
dual basis of W ∗. With Z = W ×W ∗ and defining Ω : Z × Z → R as in
(2.2.2), one computes that the matrix of Ω in the basis

{(e1, 0), . . . , (en, 0), (0, e1), . . . , (0, en)}
is

J =
[

0 l
−l 0

]
, (2.2.5)

where l and 0 are the n× n identity and zero matrices. ¨

(d) Symplectic Form Associated to an Inner Product Space. If
(W, 〈 , 〉) is a real inner product space, W is in duality with itself, so we
obtain a symplectic form on Z = W ×W from (2.2.3):

Ω((w1, w2), (z1, z2)) = 〈z2, w1〉 − 〈z1, w2〉 . (2.2.6)

As a special case of (2.2.6), let W = R3 with the usual inner product

〈q,v〉 = q · v =
3∑
i=1

qivi.

The corresponding symplectic form on R6 is given by

Ω((q1,v1), (q2,v2)) = v2 · q1 − v1 · q2, (2.2.7)

where q1,q2,v1,v2 ∈ R3. This coincides with Ω defined in Example (c) for
W = R3, provided R3 is identified with (R3)∗. ¨

Bringing Ω to canonical form using elementary linear algebra results
in the following statement. If (Z,Ω) is a p-dimensional symplectic vector
space, then p is even. Furthermore, Z is isomorphic to W×W ∗ and there is
a basis of W in which the matrix of Ω is J. Such a basis is called canonical ,
as are the corresponding coordinates. See Exercise 2.2-3.

(e) Symplectic Form on Cn. Write elements of complex n-space Cn
as n-tuples z = (z1, . . . , zn) of complex numbers. The Hermitian inner
product is

〈z, w〉 =
n∑
j=1

zjwj =
n∑
j=1

(xjuj + yjvj) + i
n∑
j=1

(ujyj − vjxj),

where zj = xj + iyj and wj = uj + ivj . Thus, Re 〈z, w〉 is the real inner
product and −Im 〈z, w〉 is the symplectic form if Cn is identified with Rn×
Rn. ¨
. . . . . . . . . . . . . . . . . . . . . . . . . 13 January 1998—12h06 . . . . . . . . . . . . . . . . . . . . . . . . .
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(f) Quantum Mechanical Symplectic Form. The following symplec-
tic vector space arises in quantum mechanics, as we shall explain in Chap-
ter 3. Recall that a Hermitian inner product 〈 , 〉 : H × H → C on a
complex Hilbert space H is linear in its first argument, antilinear in its sec-
ond, and 〈ψ1, ψ2〉 is the complex conjugate of 〈ψ2, ψ1〉, where ψ1, ψ2 ∈ H.

Set

Ω(ψ1, ψ2) = −2~ Im 〈ψ1, ψ2〉 ,

where ~ is Planck’s constant. One checks that Ω is a strong symplectic
form on H. Let H be the complexification of a real Hilbert space H, so it
is identified with H ×H, and the inner product is given by

〈(u1, u2), (v1, v2)〉 = 〈u1, v1〉+ 〈u2, v2〉+ i(〈u2, v1〉 − 〈u1, v2〉).

This form coincides with 2~ times that in (2.2.6). On the other hand, if we
embed H into H×H∗ via ψ 7→ (iψ, ψ) then the restriction of ~ times the
canonical symplectic form (2.2.6) on H×H∗, namely,

((ψ1, ϕ1), (ψ2, ϕ2)) 7→ ~Re[〈ϕ2, ψ1〉 − 〈ϕ1, ψ2〉],

coincides with Ω . ¨

Exercises

¦ Exercise 2.2-1. Verify that the formula for the symplectic form for R2n

as a matrix, namely,

J =
[

0 l
−l 0

]
coincides with the definition of the symplectic form as the canonical form
on R2n regarded as the product Rn × (Rn)∗.

¦ Exercise 2.2-2. Let (Z,Ω) be a finite-dimensional symplectic vector space
and let V ⊂ Z be a linear subspace. Assume that V is symplectic; that is,
Ω restricted to V × V is nondegenerate. Let

V Ω = {z ∈ Z | Ω(z, v) = 0 for all v ∈ V }.

Show that V Ω is symplectic and Z = V ⊕ V Ω.

¦ Exercise 2.2-3. Find a canonical basis for a symplectic form Ω on Z as
follows. Let e1 ∈ Z, e1 6= 0. Find e2 ∈ Z with Ω(e1, e2) 6= 0. By rescaling
e2, assume Ω(e1, e2) = 1. Let V be the span of e1 and e2. Apply Exercise
2.2-2 and repeat this construction on V Ω.

¦ Exercise 2.2-4. Let (Z,Ω) be a finite dimensional symplectic vector
space and V ⊂ Z a subspace. Define V Ω as in Exercise 2.2-2. Show that
Z/V Ω and V ∗ are isomorphic vector spaces.
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2.3 Canonical Transformations or Symplectic Maps 69

2.3 Canonical Transformations or
Symplectic Maps

To motivate the definition of symplectic maps (synonymous with canonical
transformations), start with Hamilton’s equations:

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, (2.3.1)

and a transformation ϕ : Z → Z of phase space to itself. Write

(q̃, p̃) = ϕ(q, p)

that is,

z̃ = ϕ(z). (2.3.2)

Assume z(t) = (q(t), p(t)) satisfies Hamilton’s equations, that is,

ż(t) = XH(z(t)) = Ω] dH(z(t)), (2.3.3)

where Ω] : Z → Z∗ is the linear map with matrix J whose entries we denote
BJK . By the chain rule, z̃ = ϕ(z) satisfies

˙̃z
I

=
∂ϕI

∂zJ
żJ =: AIJ ż

J (2.3.4)

(sum on J). Substituting (2.3.3) into (2.3.4), employing coordinate nota-
tion, and using the chain rule implies

˙̃z
I

= AIJB
JK ∂H

∂zK
= AIJB

JKALK
∂H

∂z̃L
. (2.3.5)

Thus, the equations (2.3.5) are Hamiltonian if and only if

AIJB
JKALK = BIL, (2.3.6)

or in matrix notation

AJAT = J. (2.3.7)

In terms of composition of linear maps, (2.3.6) means

A ◦ Ω] ◦AT = Ω], (2.3.8)

since the matrix of Ω] in canonical coordinates is J (see §2.1). A transfor-
mation satisfying (2.3.6) is called a canonical transformation, a sym-
plectic transformation , or a Poisson transformation2.

2In Chapter 10, where Poisson structures can be different from symplectic ones, we
will see that (2.3.8) generalizes to the Poisson context.
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Taking determinants of (2.3.7), shows that detA = ±1 and in particular
that A is invertible; taking the inverse of (2.3.8) gives

(AT )−1 ◦ Ω[ ◦A−1 = Ω[,

that is,

AT ◦ Ω[ ◦A = Ω[, (2.3.9)

which has the matrix form

AT JA = J (2.3.10)

since the matrix of Ω[ in canonical coordinates is −J (see §2.1). Note that
(2.3.7) and (2.3.10) are equivalent (the inverse of one gives the other). As
bilinear forms, (2.3.9) reads

Ω(Dϕ(z) · z1,Dϕ(z) · z2) = Ω(z1, z2), (2.3.11)

where Dϕ is the derivative of ϕ (the Jacobian matrix in finite dimensions).
With (2.3.11) as a guideline, we write the general condition for map to be
symplectic.

Definition 2.3.1. If (Z,Ω) and (Y,Ξ) are symplectic vector spaces, a
smooth map f : Z → Y is called symplectic or canonical if it preserves
the symplectic forms, that is, if

Ξ(Df(z) · z1,Df(z) · z2) = Ω(z1, z2) (2.3.12)

for all z, z1, z2 ∈ Z.

Pull Back Notation

We introduce a convenient notation for these sorts of transformations.

ϕ∗f pull back of a function : ϕ∗f = f ◦ ϕ.
ϕ∗g push forward of a function : ϕ∗g = g ◦ ϕ−1.

ϕ∗X push forward of a vector field X by ϕ:

(ϕ∗X)(ϕ(z)) = Dϕ(z) ·X(z);

in components,

(ϕ∗X)I =
∂ϕI

∂zJ
XJ .
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ϕ∗Y pull back of a vector field Y by ϕ: ϕ∗Y = (ϕ−1)∗Y

ϕ∗Ω pull back of a bilinear form Ω on Z gives a bilinear
form ϕ∗Ω depending on the point z ∈ Z:

(ϕ∗Ω)z(z1, z2) = Ω(Dϕ(z) · z1,Dϕ(z) · z2);

in components,

(ϕ∗Ω)IJ =
∂ϕK

∂zI
∂ϕL

∂zJ
ΩKL;

ϕ∗Ξ push forward a bilinear form Ξ by ϕ equals pull back

by the inverse: ϕ∗Ξ = (ϕ−1)∗Ξ.

In this pull-back notation, (2.3.12) reads (f∗Θ)z − Ωz, or f∗Θ = Ω for
short.

The Symplectic Group. It is simple to verify that if (Z,Ω) is a finite-
dimensional symplectic vector space, the set of all linear symplectic map-
pings T : Z → Z forms a group under composition. It is called the sym-
plectic group and is denoted by Sp(Z,Ω). As we have seen, in a canonical
basis, a matrix A is symplectic if and only if

AT JA = J, (2.3.13)

where AT is the transpose of A. For Z = W ×W ∗ and a canonical basis,
if A has the matrix

A =
[
Aqq Aqp
Apq App

]
, (2.3.14)

then one checks (Exercise 2.4-2) that (2.3.13) is equivalent to either of the
two conditions:

(1) AqqATqp and AppATpq are symmetric and AqqATpp −AqpATpq = l; or

(2) ATpqAqq and ATqpApp are symmetric and ATqqApp −ATpqApq = l.

In infinite dimensions Sp(Z,Ω) is, by definition, the set of elements of
GL(Z) (the group of invertible bounded linear operators of Z to Z ) that
leave Ω fixed.

Symplectic Orthogonal Complements. If (Z,Ω) is a (weak) sym-
plectic space and E and F are subspaces of Z, we define EΩ = {z ∈ Z |
Ω(z, e) = 0 for all e ∈ E}, called the symplectic orthogonal comple-
ment of E. We leave it to the reader to check that

(i) EΩ is closed;
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72 2.3 Canonical Transformations or Symplectic Maps

(ii) E ⊂ F implies FΩ ⊂ EΩ ;

(iii) EΩ ∩ FΩ = (E + F )Ω;

(iv) if Z is finite dimensional, then dimE+dimEΩ = dimZ (to show this,
use the fact that EΩ = ker(i∗ ◦Ω[), where i : E → Z is the inclusion
and i∗ : Z∗ → E∗ is its dual, i∗(α) = α ◦ i, which is surjective
alternatively, use Exercise 2.2-4);

(v) if Z is finite dimensional, EΩΩ = E (this is also true in infinite di-
mensions if E is closed); and

(vi) if E and F are closed, then (E ∩ F )Ω = EΩ + FΩ (to prove this use
iii and v).

Exercises

¦ Exercise 2.3-1. Show that a transformation ϕ : R2n → R2n is symplec-
tic in the sense that its derivative matrix A = Dϕ(z) satisfies the condition
AT JA = J if and only if the condition

Ω(Az1, Az2) = Ω(z1, z2)

holds for all z1, z2 ∈ R2n.

¦ Exercise 2.3-2. Let Z = W ×W ∗, let A : Z → Z and, using canonical
coordinates, write the matrix of A as

A =
[
Aqq Aqp
Apq App

]
.

Show that A being symplectic is equivalent to either of the two conditions:

(i) AqqATqp and AppATpq are symmetric and AqqATpp −AqpATpq = l; or

(ii) ATpqAqq and ATqpApp are symmetric and ATqqApp −ATpqAqp = l. (Here,
l is the n× n identity.)

¦ Exercise 2.3-3. Let f be a given function of q = (q1, q2, . . . , qn). Define
the map ϕ : R2n → R2n by ϕ(q,p) = (q,p + df(q)). Show that ϕ is a
canonical (symplectic) transformation.

¦ Exercise 2.3-4.

(a) Let A ∈ GL(n,R) be an invertible linear transformation. Show that
the map ϕ : R2n → R2n given by (q,p) 7→ (Aq, (A−1)Tp) is a canon-
ical transformation.

(b) If R is a rotation in R3, show that the map (q,p) 7→ (Rq,Rp) is a
canonical transformation.
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¦ Exercise 2.3-5. Let (Z,Ω) be a finite dimensional symplectic vector
space. A subspace E ⊂ Z is called isotropic, coisotroipic, and La-
grangian if E ⊂ EΩ, EΩ ⊂ E, and E = EΩ respectively. Note that,
E is Lagrangian if and only if it is isotropic and coisotropic at the same
time. Show that:

(a) An isotropic (coisotropic) subspace E is Lagrangian if and only if
dimE = dimEΩ. In this case necessarily 2 dimE = dimZ.

(b) An isotropic (coisotropic) subspace is Lagrangian if and only if it is
a maximal isotropic (minimal coisotropic) subspace.

(c) Every isotropic (coisotropic) subspace is contained in (contains) a
Lagrangian subspace.

2.4 The General Hamilton Equations

The concrete form of Hamilton’s equations we have already encountered
is a special case of a construction on symplectic spaces. Here, we discuss
this formulation for systems whose phase space is linear; in subsequent
sections we will generalize the setting to phase spaces which are symplectic
manifolds and in Chapter 10 to spaces where only a Poisson bracket is
given. These generalizations will all be important in our study of specific
examples.

Definition 2.4.1. Let (Z,Ω) be a symplectic vector space. A vector field
X : Z → Z is called Hamiltonian if

Ω[(X(z)) = dH(z), (2.4.1)

for all z ∈ Z, for some C1 function H : Z → R. Here dH(z) = DH(z) is
alternative notation for the derivative of H. If such an H exists, we write
X = XH and call H a Hamiltonian function , or energy function for
the vector field X.

In a number of important examples, especially infinite-dimensional ones,
H need not be defined on all of Z. We shall briefly discuss some of the
technicalities involved in §3.3.

If Z is finite dimensional, nondegeneracy of Ω implies that Ω[ : Z → Z∗ is
an isomorphism, which guarantees thatXH exists for any given functionH.
However, if Z is infinite dimensional and Ω is only weakly nondegenerate,
we do not know a priori that XH exists for a given H. If it does exist, it
is unique since Ω[ is one-to-one.

The set of Hamiltonian vector fields on Z is denoted XHam(Z), or simply
XHam. Thus XH ∈ XHam is the vector field determined by the condition

Ω(XH(z), δz) = dH(z) · δz for all z, δz ∈ Z. (2.4.2)
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74 2.4 The General Hamilton Equations

If X is a vector field, the interior product iXΩ is defined to be the
dual vector (also called, a one form) given at a point z ∈ Z as follows:

(iXΩ)z ∈ Z∗; (iXΩ)z(v) := Ω(X(z), v),

for all v ∈ Z. Then condition (2.4.1) or (2.4.2) may be written as

iXΩ = dH. (2.4.3)

To expressH in terms ofXH and Ω, we integrate the identity dH(tz)·z =
Ω(XH(tz), z) from t = 0 to t = 1. The fundamental theorem of calculus
gives

H(z)−H(0) =
∫ 1

0

dH(tz)
dt

dt =
∫ 1

0

dH(tz) · z dt

=
∫ 1

0

Ω(XH(tz), z) dt. (2.4.4)

Let us now abstract the calculation we did in arriving at (2.3.7).

Proposition 2.4.2. Let (Z,Ω) and (Y,Ξ) be symplectic vector spaces and
f : Z → Y a diffeomorphism. Then f is a symplectic transformation if and
only if for all Hamiltonian vector fields XH on Y , we have f∗XH◦f = XH ;
that is,

Df(z) ·XH◦f (z) = XH(f(z)). (2.4.5)

Proof. Note that for v ∈ Z,

Ω(XH◦f (z), v) = d(H ◦ f)(z) · v = dH(f(z)) ·Df(z) · v
= Ξ(XH(f(z)),Df(z) · v). (2.4.6)

If f is symplectic, then

Ξ(Df(z) ·XH◦f (z),Df(z) · v) = Ω(XH◦f (z), v)

and thus by nondegeneracy of Ξ and the fact that Df(z) · v is an arbi-
trary element of Y (because f is a diffeomorphism and hence Df(z) is an
ismorphism), (2.4.5) holds. Conversely, if (2.4.5) holds, then (2.4.6) implies
that

Ξ(Df(z) ·XH◦f (z),Df(z) · v) = Ω(XH◦f (z), v)

for any v ∈ Z and any C1 map H : Y → R. However, XH◦f (z) equals an
arbitrary element w ∈ Z for a correct choice of the Hamiltonian function
H, namely, (H ◦ f)(z) = Ω(w, z). Thus, f is symplectic. ¥

Definition 2.4.3. Hamilton’s equations for H is the system of differ-
ential equations defined by XH . Letting c : R→ Z be a curve, they are the
equations

dc(t)
dt

= XH(c(t)). (2.4.7)
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The Classical Hamilton Equations. We now relate the abstract form
(2.4.7) to the classical form of Hamilton’s equations. In the following, an
n-tuple (q1, . . . , qn) will be denoted simply by (qi), etc.

Proposition 2.4.4. Suppose that (Z,Ω) is a 2n-dimensional symplectic
vector space, and let (qi, pi) = (q1, . . . , qn, p1, . . . , pn) denote canonical
coordinates, with respect to which Ω has matrix J. Then in this coordinate
system, XH : Z → Z is given by

XH =
(
∂H

∂pi
,−∂H

∂qi

)
= J · ∇H. (2.4.8)

Thus, Hamilton’s equations in canonical coordinates are

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

. (2.4.9)

More generally, if Z = V ×V ′, 〈· , ·〉 : V ×V ′ → R is a weakly nondegenerate
pairing, and Ω((e1, α1), (e2, α2)) = 〈α2, e1〉 − 〈α1, e2〉, then

XH(e, α) =
(
δH

δα
,−δH

δe

)
, (2.4.10)

where δH/δα ∈ V and δH/δe ∈ V ′ are the partial functional deriva-
tives defined by

D2H(e, α) · β =
〈
β,
δH

δα

〉
(2.4.11)

for any β ∈ V ′ and similarly for δH/δe; in (2.4.10) it is assumed that the
functional derivatives exist.

Proof. If (f, β) ∈ V × V ′, then

Ω
((

δH

δα
,−δH

δe

)
, (f, β)

)
=
〈
β,
δH

δα

〉
+
〈
δH

δe
, f

〉
= D2H(e, α) · β + D1H(e, α) · f
= 〈dH(e, α), (f, β)〉 . ¥

Proposition 2.4.5. (Conservation of Energy) Let c(t) be an integral
curve of XH . Then H(c(t)) is constant in t. If ϕt denotes the flow of XH ,
that is, ϕt(z) is the solution of (2.4.7) with initial conditions z ∈ Z, then
H ◦ ϕt = H.

Proof. By the chain rule,

d

dt
H(c(t)) = dH(c(t)) · d

dt
c(t) = Ω

(
XH(c(t)),

d

dt
c(t)
)

= Ω (XH(c(t)), XH(c(t))) = 0,

where the final equality follows from the skew-symmetry of Ω. ¥
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Exercises

¦ Exercise 2.4-1. Let the skew-symmetric bilinear form Ω on R2n have
the matrix [

B l
−l 0

]
,

where B = [Bij ] is a skew-symmetric n × n matrix, and 1 is the identity
matrix.

(a) Show that Ω is nondegenerate and hence a symplectic form on R2n.

(b) Show that Hamilton’s equations with respect to Ω are, in standard
coordinates,

dqi

dt
=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi
−Bij

∂H

∂pj
.

2.5 When Are Equations Hamiltonian?

Having seen how to derive Hamilton’s equations on (Z,Ω) given H, it is
natural to consider the converse: when are a given set of equations

dz

dt
= X(z), where X : Z → Z is a vector field, (2.5.1)

Hamilton’s equations for some H? If X is linear, the answer is given by the
following.

Proposition 2.5.1. Let the vector field A : Z → Z be linear. Then A is
Hamiltonian if and only if A is Ω-skew; that is,

Ω(Az1, z2) = −Ω(z1, Az2)

for all z1, z2 ∈ Z. Furthermore, in this case one can take H(z) = 1
2Ω(Az, z).

Proof. Differentiating the defining relation

Ω(XH(z), v) = dH(z) · v (2.5.2)

with respect to z in the direction u and using bilinearity of Ω, one gets

Ω(DXH(z) · u, v) = D2H(z)(v, u). (2.5.3)

From this and the symmetry of the second partial derivatives, we get

Ω(DXH(z) · u, v) = D2H(z)(u, v) = Ω(DXH(z) · v, u)
= −Ω(u,DXH(z) · v). (2.5.4)
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If A = XH for some H, then DXH(z) = A, and (2.5.4) becomes Ω(Au, v) =
−Ω(u,Av); hence A is Ω-skew.

Conversely, suppose that A is Ω-skew. Defining H(z) = 1
2Ω(Az, z), we

claim that A = XH . Indeed,

dH(z) · u =
1
2
Ω(Au, z) +

1
2
Ω(Az, u)

= −1
2
Ω(u,Az) +

1
2
Ω(Az, u)

=
1
2
Ω(Az, u) +

1
2
Ω(Az, u) = Ω(Az, u). ¥

In canonical coordinates, where Ω has matrix J, Ω-skewness of A is
equivalent to symmetry of the marix JA; that is, JA + AT J = 0. The
vector space of all linear transformations of Z satisfying this condition is
denoted by sp(Z,Ω) and its elements are called infinitesimal symplectic
transformations. In canonical coordinates, if Z = W ×W ∗ and if A has
the matrix

A =
[
Aqq Aqp
Apq App

]
, (2.5.5)

then one checks that A is infinitesimally symplectic if and only if Aqp and
Apq are both symmetric and ATqq+App = 0. Compare with Exercise 2.5-1.

In the complex linear case, we use Example (f) in §2.3 (2~ times the
negative imaginary part of a Hermitian inner product 〈 , 〉 is the symplectic
form) to arrive at the following.

Corollary 2.5.2. Let H be a complex Hilbert space with Hermitian inner
product 〈 , 〉 and let Ω(ψ1, ψ2) = −2~ Im 〈ψ1, ψ2〉. Let A : H → H be a
complex linear operator. There exists an H : H → R such that A = XH if
and only if iA is symmetric or, equivalently, satisfies

〈iAψ1, ψ2〉 = 〈ψ1, iAψ2〉 . (2.5.6)

In this case, H may be taken to be H(ψ) = ~ 〈iAψ, ψ〉. We let Hop =
i~A and thus Hamilton’s equations ψ̇ = Aψ becomes the Schrödinger
equation3:

i~
∂ψ

∂t
= Hopψ. (2.5.7)

3Strictly speaking, equation (2.5.6) is required to hold only on the domain of the
operator A, which need not be all of H. We shall ignore these issues for simplicity. This
example is continued in §2.6 and in §3.2.
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Proof. A is Ω-skew if and only if Im 〈Aψ1, ψ2〉 = −Im 〈ψ1, Aψ2〉 for
all ψ1, ψ2 ∈ H. Replacing everywhere ψ1 by iψ1 and using the relation
Im(iz) = Re z, this is equivalent to Re 〈Aψ1, ψ2〉 = −Re 〈ψ1, Aψ2〉. Since

〈iAψ1, ψ2〉 = −Im 〈Aψ1, ψ2〉+ iRe 〈Aψ1, ψ2〉 , (2.5.8)
and

〈ψ1, iAψ2〉 = +Im 〈ψ1, Aψ2〉 − iRe 〈ψ1, Aψ2〉 , (2.5.9)

we see that Ω-skewness of A is equivalent to iA being symmetric. Finally

~ 〈iAψ, ψ〉 = ~Re i 〈Aψ,ψ〉 = −~ Im 〈Aψ,ψ〉 =
1
2
Ω(Aψ,ψ)

and the corollary follows from Proposition 2.5.1. ¥

For nonlinear differential equations, the analogue of Proposition 2.5.1 is
the following.

Proposition 2.5.3. Let X : Z → Z be a (smooth) vector field on a
symplectic vector space (Z,Ω). Then X = XH for some H : Z → R if and
only if DX(z) is Ω-skew for all z.

Proof. We have seen the “only if” part in the proof of Proposition 2.5.1.
Conversely, if DX(z) is Ω-skew, define4

H(z) =
∫ 1

0

Ω(X(tz), z) dt+ constant; (2.5.10)

we claim that X = XH . Indeed,

dH(z) · v =
∫ 1

0

[Ω(DX(tz) · tv, z) + Ω(X(tz), v)] dt

=
∫ 1

0

[Ω(tDX(tz) · z, v) + Ω(X(tz), v)] dt

= Ω
(∫ 1

0

[tDX(tz) · z +X(tz)] dt, v
)

= Ω
(∫ 1

0

d

dt
[tX(tz)] dt, v

)
= Ω(X(z), v). ¥

Using the straightening out theorem (see, for example, Abraham, Mars-
den, and Ratiu [1988], Section 4.1) it is easy to see that on an even-
dimensional manifold any vector field is locally Hamiltonian near points

4Looking ahead to Chapter 4 on differential forms, one can check that (2.5.10) for H
is reproduced by the proof of the Poincaré lemma applied to the one-form iXΩ. That
DX(z) is Ω-skew is equivalent to d(iXΩ) = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . 13 January 1998—12h06 . . . . . . . . . . . . . . . . . . . . . . . . .
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where it is non-zero, relative to some symplectic form. However, it is not
so simple to get a general criterion of this sort that is global, covering
singular points as well.

An interesting characterization of Hamiltonian vector fields involves the
Cayley transform. Let (Z,Ω) be a symplectic vector space and A : Z → Z a
linear transformation such that I −A is invertible. Then A is Hamiltonian
iff its Cayley transform C = (I + A)(I − A)−1 is symplectic. See Ex-
ercise 2.5-2. For applications, see Laub and Meyer [1974], Paneitz [1981],
Feng [1986], and Austin and Krishnaprasad [1993]. The Cayley transform
is useful in some Hamiltonian numerical algorithms, as this last reference
and Marsden [1992] shows.

Exercises

¦ Exercise 2.5-1. Let Z = W ×W ∗ and use a canonical basis to write the
matrix of the linear map A : Z → Z as

A =
[
Aqq Aqp
Apq App

]
.

Show that A is infinitesimally symplectic, that is, JA+AT J = 0 if and only
if Aqp and Apq are both symmetric and ATqq +App = 0.

¦ Exercise 2.5-2. Let (Z,Ω) be a symplectic vector space. Let A : Z → Z
be a linear map and assume that (I − A) is invertible. Show that A is
Hamiltonian iff its Cayley transform

(I +A)(I −A)−1

is symplectic. Give an example of a linear Hamiltonian vector field such
that (I −A) is not invertible.

¦ Exercise 2.5-3. Suppose that (Z,Ω) is a finite-dimensional symplectic
vector space and let ϕ : Z → Z be a linear symplectic map. If λ is an eigen-
value of multiplicity k, then so is 1/λ. Prove this using the characteristic
polynomial of ϕ.

¦ Exercise 2.5-4. Suppose that (Z,Ω) is a finite-dimensional symplectic
vector space and let A : Z → Z be a Hamiltonian vector field. Show that
the generalized kernel of A defined to be the set {z ∈ Z | Akz = 0, for
some integer k ≥ 1}, is a symplectic subspace.

2.6 Hamiltonian Flows

This subsection discusses flows of Hamiltonian vector fields a little further.
The next subsection gives the abstract definition of the Poisson bracket,
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relates it to the classical definitions, and then shows how it may be used in
describing the dynamics. Later on, Poisson brackets will play an increas-
ingly important role.

Let XH be a Hamiltonian vector field on a symplectic vector space (Z,Ω)
with Hamiltonian H : Z → R. The flow of XH is the collection of maps
ϕt : Z → Z satisfying

d

dt
ϕt(z) = XH(ϕt(z)) (2.6.1)

for each z ∈ Z and real t. Here and in the following, all statements con-
cerning the map ϕt : Z → Z are to be considered only for those z and t
such that ϕt(z) is defined, as determined by differential equations theory.

Linear Flows. First consider the case in which A is a (bounded) linear
vector field. The flow of A may be written as ϕt = etA; that is, the solution
of dz/dt = Az with initial condition z0 is given by z(t) = ϕt(z0) = etAz0.

Proposition 2.6.1. The flow ϕt of a linear vector field A : Z → Z con-
sists of (linear) canonical transformations if and only if A is Hamiltonian.

Proof. For all u, v ∈ Z we have

d

dt
(ϕ∗tΩ)(u, v) =

d

dt
Ω(ϕt(u), ϕt(v))

= Ω
(
d

dt
ϕt(u), ϕt(v)

)
+ Ω

(
ϕt(u),

d

dt
ϕt(v)

)
= Ω(Aϕt(u), ϕt(v)) + Ω(ϕt(u), Aϕt(v)).

Therefore, A is Ω-skew, that is, A is Hamiltonian, if and only if each ϕt is
a linear canonical transformation. ¥

Nonlinear Flows. For nonlinear flows, there is a corresponding result.

Proposition 2.6.2. The flow ϕt of a (nonlinear) Hamiltonian vector
field XH consists of canonical transformations. Conversely, if the flow of a
vector field X consists of canonical transformations, then it is Hamiltonian.

Proof. Let ϕt be the flow of a vector field X. By (2.6.1) and the chain
rule:

d

dt
[Dϕt(z) · v] = D

[
d

dt
ϕt(z)

]
· v = DX(ϕt(z)) · (Dϕt(z) · v).

Using this, we get

d

dt
Ω(Dϕt(z) · u,Dϕt(z) · v) = Ω(DX(ϕt(z)) · [Dϕt(z) · u],Dϕt(z) · v)

+ Ω(Dϕt(z) · u,DX(ϕt(z)) · [Dϕt(z) · v]).
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If X = XH , then DXH(ϕt(z)) is Ω-skew by Proposition 2.5.3, so,

Ω(Dϕt(z) · u,Dϕt(z) · v) = constant.

At t = 0 this equals Ω(u, v), so ϕ∗tΩ = Ω. Conversely, if ϕt is canonical, this
calculation shows that DX(ϕt(z)) is Ω-skew, whence by Proposition 2.5.3,
X = XH for some H. ¥

Later on we give another proof of Proposition 2.6.2 using differential
forms.

Example: Schrödinger Equation

Proposition 2.6.3. Let A : H → H be a complex linear map on a com-
plex Hilbert space H. The flow ϕt of A is canonical, that is, consists of
canonical transformations with respect to the symplectic form Ω defined in
Example (f) of §2.3, if and only if ϕt is unitary.

Proof. By definition,

Ω(ψ1, ψ2) = −2~ Im 〈ψ1, ψ2〉 ,
so

Ω(ϕtψ1, ϕtψ2) = −2~ Im 〈ϕtψ1, ϕtψ2〉

for ψ1, ψ2 ∈ H. Thus ϕt is canonical if and only if Im 〈ϕtψ1, ϕtψ2〉 =
Im 〈ψ1, ψ2〉 and this in turn is equivalent to unitarity by complex linearity
of ϕt since 〈ψ1, ψ2〉 = −Im 〈iψ1, ψ2〉+ i Im 〈ψ1, ψ2〉 . ¥

This shows that the flow of the Schrödinger equation ψ̇ = Aψ is
canonical and unitary and so preserves the probability amplitude of any
wave function that is a solution:

〈ϕtψ,ϕtψ〉 = 〈ψ,ψ〉 ,

where ϕt is the flow of A. Later we shall see how this conservation of the
norm also results from a symmetry-induced conservation law.

2.7 Poisson Brackets

Definition 2.7.1. Given a symplectic vector space (Z,Ω) and two func-
tions F,G : Z → R, the Poisson bracket {F,G} : Z → R of F and G is
defined by

{F,G}(z) = Ω(XF (z), XG(z)). (2.7.1)
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Using the definition of a Hamiltonian vector field, we find that equivalent
expressions are

{F,G}(z) = dF (z) ·XG(z) = −dG(z) ·XF (z). (2.7.2)

In (2.7.2) we write £XGF = dF · XG, for the derivative of F in the
direction XG.

Lie Derivative Notation. The Lie derivative of f along X, £Xf =
df ·X is the directional derivative of f in the directionX. In coordinates
it is given by

£Xf =
∂f

∂zI
XI (sum on I).

Functions F,G which are such that {F,G} = 0 are said to be in invo-
lution or to Poisson commute .

Examples

Now we turn to some examples of Poisson brackets.

(a) Canonical Bracket. Suppose that Z is 2n-dimensional. Then in
canonical coordinates (q1, . . . , qn, p1, . . . , pn) we have

{F,G} =
[
∂F

∂pi
,−∂F

∂qi

]
J


∂G

∂pi

−∂G
∂qi



=
∂F

∂qi
∂G

∂pi
− ∂F

∂pi

∂G

∂qi
(sum on i). (2.7.3)

From this, we get the fundamental Poisson brackets:

{qi, qj} = 0, {pi, pj} = 0, and {qi, pj} = δij . (2.7.4)

In terms of the Poisson structure, that is, the bilinear form B from §2.1,
the Poisson bracket takes the form

{F,G} = B(dF,dG). (2.7.5)

¨

(b) The Space of Functions. Let (Z,Ω) be defined as in Example (b)
of §2.3 and let F,G : Z → R. Using (2.4.10) and (2.7.1) above, we get

{F,G} = Ω(XF , XG) = Ω
((

δF

δπ
,−δF

δϕ

)
,

(
δG

δπ
,−δG

δϕ

))
=
∫
R3

(
δG

δπ

δF

δϕ
− δF

δπ

δG

δϕ

)
. (2.7.6)
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This example will be used in the next chapter when we study classical field
theory. ¨

The Jacobi–Lie Bracket. The Jacobi–Lie bracket [X,Y ] of two vec-
tor fields X and Y on a vector space Z is defined by demanding that

df · [X,Y ] = d(df · Y ) ·X − d(df ·X) · Y

for all real-valued functions f . In Lie derivative notation, this reads

£[X,Y ]f = £X£Y f −£Y £Xf.

One checks that this condition becomes, in vector analysis notation,

[X,Y ] = (X · ∇)Y − (Y · ∇)X,

and in coordinates,

[X,Y ]J = XI ∂

∂zI
Y J − Y I ∂

∂zI
XJ .

Proposition 2.7.2. Let [ , ] denote the Jacobi–Lie bracket of vector fields,
and let F,G ∈ F(Z). Then

X{F,G} = −[XF , XG]. (2.7.7)

Proof. We calculate as follows:

Ω(X{F,G}(z), u) = d{F,G}(z) · u = d(Ω(XF (z), XG(z))) · u
= Ω(DXF (z) · u,XG(z)) + Ω(XF (z),DXG(z) · u)
= Ω(DXF (z) ·XG(z), u)− Ω(DXG(z) ·XF (z), u)
= Ω(DXF (z) ·XG(z)−DXG(z) ·XF (z), u)
= Ω(−[XF , XG](z), u).

Weak nondegeneracy of Ω implies the result. ¥

Jacobi’s Identity. We are now ready to prove the Jacobi identity in a
fairly general context.

Proposition 2.7.3. Let (Z,Ω) be a symplectic vector space. Then the
Poisson bracket { , } : F(Z) × F(Z) → F(Z) makes F(Z) into a Lie
algebra . That is, this bracket is real bilinear, skew-symmetric, and satisfies
Jacobi’s identity , that is,

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0.
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Proof. To verify Jacobi’s identity note that for F,G,H : Z → R, we have

{F, {G,H}} = −£XF {G,H} = £XF£XGH,

{G, {H,F}} = −£XG{H,F} = −£XG£XFH

and

{H, {F,G}} = £X{F,G}H,

so that

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = £X{F,G}H + £[XF ,XG]H.

The result thus follows by (2.7.7). ¥

From Proposition 2.7.2 we see that the Jacobi–Lie bracket of two Hamil-
tonian vector fields is again Hamiltonian. Thus, we obtain:

Corollary 2.7.4. The set of Hamiltonian vector fields XHam(Z) forms a
Lie subalgebra of X(Z).

Next, we characterize symplectic maps in terms of brackets.

Proposition 2.7.5. Let ϕ : Z → Z be a diffeomorphism. Then ϕ is
symplectic iff it preserves Poisson brackets, that is,

{ϕ∗F,ϕ∗G} = ϕ∗{F,G}, (2.7.8)

for all F,G : Z → R.

Proof. We use the identity

ϕ∗(£Xf) = £ϕ∗X(ϕ∗f),

which follows from the chain rule. Thus,

ϕ∗{F,G} = ϕ∗£XGF = £ϕ∗XG(ϕ∗F )

and

{ϕ∗F,ϕ∗G} = £XG◦ϕ(ϕ∗F ).

Thus ϕ preserves Poisson brackets iff ϕ∗XG = XG◦ϕ for every G : Z → R,
that is, iff ϕ is symplectic by Proposition 2.4.2. ¥

Proposition 2.7.6. Let XH be a Hamiltonian vector field on Z, with
Hamiltonian H and flow ϕt. Then for F : Z → R,

d

dt
(F ◦ ϕt) = {F ◦ ϕt, H} = {F,H} ◦ ϕt. (2.7.9)
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Proof. By the chain rule and the definition of XF ,

d

dt
[(F ◦ ϕt)(z)] = dF (ϕt(z)) ·XH(ϕt(z))

= Ω(XF (ϕt(z)), XH(ϕt(z)))
= {F,H}(ϕt(z)).

By Proposition 2.6.2 and (2.7.8), this equals {F ◦ ϕt, H ◦ ϕt}(z) = {F ◦
ϕt, H}(z) by conservation of energy. ¥

Corollary 2.7.7. Let F,G : Z → R. Then F is constant along integral
curves of XG if and only if G is constant along integral curves of XF and
this is true if and only if {F,G} = 0.

Proposition 2.7.8. Let A,B : Z → Z be linear Hamiltonian vector fields
with corresponding energy functions

HA(z) = 1
2Ω(Az, z) and HB(z) = 1

2Ω(Bz, z).

Letting [A,B] = A ◦B −B ◦A be the operator commutator, we have

{HA, HB} = H[A,B]. (2.7.10)

Proof. By definition, XHA = A and so

{HA, HB}(z) = Ω(Az,Bz).

Since A and B are Ω-skew, we get

{HA, HB}(z) = 1
2Ω(ABz, z)− 1

2Ω(BAz, z)

= 1
2Ω([A,B]z, z) = H[A,B](z). ¥

2.8 A Particle in a Rotating Hoop

In this subsection we take a break from the abstract theory to do an ex-
ample the “old-fashioned” way. This and other examples will also serve as
excellent illustrations of the theory we are developing.

Derivation of the Equations. Consider a particle constrained to move
on a circular hoop; for example a bead sliding in a hula-hoop. The particle is
assumed to have mass m and to be acted on by gravitational and frictional
forces, as well as constraint forces that keep it on the hoop. The hoop
itself is spun about a vertical axis with constant angular velocity ω, as in
Figure 2.8.1.
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x

R

z

θ
y

ω

ϕ

er

eθ

eϕ

Figure 2.8.1. A particle moving in a hoop rotating with angular velocity ω.

The position of the particle in space is specified by the angles θ and
ϕ, as shown in Figure 2.8.1. We can take ϕ = ωt, so the position of the
particle becomes determined by θ alone. Let the orthonormal frame along
the coordinate directions eθ, eϕ, and er be as shown.

The forces acting on the particle are:

1. Friction, proportional to the velocity of the particle relative to the
hoop: −νRθ̇eθ, where ν ≥ 0 is a constant.

2. Gravity: −mgk.

3. Constraint forces in the directions er and eϕ to keep the particle in
the hoop.

The equations of motion are derived from Newton’s second law F = ma.
To get them, we need to calculate the acceleration a; here a means the
acceleration relative to the fixed inertial frame xyz in space; it does not
mean θ̈. Relative to this xyz coordinate system, we have

x = R sin θ cosϕ,
y = R sin θ sinϕ,
z = −R cos θ.

(2.8.1)
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Calculating the second derivatives using ϕ = ωt and the chain rule gives

ẍ = −ω2x− θ̇2x+ (R cos θ cosϕ)θ̈ − 2Rωθ̇ cos θ sinϕ,

ÿ = −ω2y − θ̇2y + (R cos θ sinϕ)θ̈ + 2Rωθ̇ cos θ cosϕ,

z̈ = −zθ̇2 + (R sin θ)θ̈.

(2.8.2)

If i, j, k, denote unit vectors along the x, y, and z axes, respectively, we
have the easily verified relation

eθ = (cos θ cosϕ)i + (cos θ sinϕ)j + sin θk. (2.8.3)

Now consider the vector equation F = ma, where F is the sum of the
three forces described earlier and

a = ẍi + ÿj + z̈k. (2.8.4)

The eϕ and er components of F = ma only tell us what the constraint
forces must be; the equation of motion comes from the eθ component:

F · eθ = ma · eθ. (2.8.5)

Using (2.8.3), the left side of (2.8.5) is

F · eθ = −νRθ̇ −mg sin θ (2.8.6)

while from (2.8.2), (2.8.3), and (2.8.4), the right side of (2.8.5) is

ma · eθ = m{ẍ cos θ cosϕ+ ÿ cos θ sinϕ+ z̈ sin θ}
= m{cos θ cosϕ[−ω2x− θ̇2x+ (R cos θ cosϕ)θ̈

− 2Rωθ̇ cos θ sinϕ] + cos θ sinϕ[−ω2y − θ̇2y

+ (R cos θ sinϕ)θ̈ + 2Rωθ̇ cos θ cosϕ]

+ sin θ[−zθ̇2 + (R sin θ)θ̈]}.

Using (2.8.1), this simplifies to

ma · eθ = mR{θ̈ − ω2 sin θ cos θ}. (2.8.7)

Comparing (2.8.5), (2.8.6), and (2.8.7), we get

θ̈ = ω2 sin θ cos θ − ν

m
θ̇ − g

R
sin θ (2.8.8)

as our final equation of motion. Several remarks concerning it are in order:

(i) If ω = 0 and ν = 0, (2.8.8) reduces to the pendulum equation

Rθ̈ + g sin θ = 0.

In fact, our system can be viewed just as well as a whirling pendu-
lum .
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(ii) For ν = 0, (2.8.8) is Hamiltonian with respect to q = θ, p = mR2θ̇,
canonical bracket structure

{F,K} =
∂F

∂q

∂K

∂p
− ∂K

∂q

∂F

∂p
, (2.8.9)

and the Hamiltonian

H =
p2

2mR2
−mgR cos θ − mR2ω2

2
sin2 θ. (2.8.10)

Derivation as Euler–Lagrange Equations. We now use Lagrangian
methods to derive (2.8.8). In Figure 2.8.1, the velocity is

v = Rθ̇eθ + (ωR sin θ)eϕ,

so the kinetic energy is

T = 1
2m‖v‖

2 = 1
2m(R2θ̇2 + [ωR sin θ]2), (2.8.11)

while the potential energy is

V = −mgR cos θ. (2.8.12)

Thus the Lagrangian is given by

L = T − V =
1
2
mR2θ̇2 +

mR2ω2

2
sin2 θ +mgR cos θ (2.8.13)

and the Euler–Lagrange equations, namely,

d

dt

∂L

∂θ̇
=
∂L

∂θ
,

(see §1.1 or §2.1) become

mR2θ̈ = mR2ω2 sin θ cos θ −mgR sin θ,

which are the same equations we derived by hand in (2.8.8) for ν = 0.
The Legendre transform gives p = mR2θ̇ and the Hamiltonian (2.8.10).
Notice that this Hamiltonian is not the kinectic plus potential energy of
the particle. In fact, if one postulated this, then Hamnilton’s equations
would give the incorrect equations. This has to do with deeper covariance
properties of the Lagrangian versus Hamiltonian equations.

Equilibria. The equilibrium solutions are solutions satisfying θ̇ = 0,
θ̈ = 0; (2.8.8) gives

Rω2 sin θ cos θ = g sin θ. (2.8.14)
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Certainly, θ = 0 and θ = π solve (2.8.14) corresponding to the particle at
the bottom or top of the hoop. If θ 6= 0 or π, (2.8.14) becomes

Rω2 cos θ = g (2.8.15)

which has two solutions when g/Rω2 < 1. The value

ωc =
√
g

R
(2.8.16)

is the critical rotation rate. (Notice that ωc is the frequency of linearized
oscillations for the simple pendulum, that is, for Rθ̈+ gθ = 0.) For ω < ωc
there are only two solutions θ = 0, π, while for ω > ωc there are four
solutions,

θ = 0, π, ± cos−1
( g

Rω2

)
. (2.8.17)

We say that a bifurcation (or a Hamiltonian pitchfork bifurcation
to be accurate) has occurred as ω crosses ωc. We can see this graphically
in computer generated solutions of (2.8.8). Set x = θ, y = θ̇ and rewrite
(2.8.8) as

ẋ = y,

ẏ =
g

R
(α cosx− 1) sinx− βy,

(2.8.18)

where α = Rω2/g and β = ν/m. Taking g = R for illustration, Figure 2.8.2
shows representative orbits in the phase portraits of (2.8.18) for various
α, β.

This system with ν = 0; that is, β = 0, is symmetric in the sense that the
Z2-action given by θ 7→ −θ and θ̇ 7→ −θ̇ leaves the phase portrait invariant.
If this Z2 symmetry is broken, by setting the rotation axis a little off center,
for example, then one side gets preferred, as in Figure 2.8.3.

The evolution of the phase portrait for ν = 0 is shown in Figure 2.8.4.
Near θ = 0, the potential function has changed from the symmetric bi-

furcation in Figure 2.8.5(a) to the unsymmetric one in Figure 2.8.5(b). This
is what is known as the cusp catastrophe ; see Golubitsky and Schaeffer
[1985] and Arnold [1968, 1984] for more information.

In (2.8.8), imagine that the hoop is subject to small periodic pulses; say
ω = ω0 + ρ cos(ηt). Using the Melnikov method described in the intro-
duction and in the following section, it is presumably true (but a messy
calculation to prove) that the resulting time-periodic system has horseshoe
chaos if ε and ν are small, but ρ/ν exceeds a critical value. See Exercise
2.8-3 and §2.11.
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α = 0.5, β = 0 α = 1.5, β = 0

α = 1.5, β = 0.1

.θ

θ

θθ

.θ

.θ

Figure 2.8.2. Phase portraits of the ball in the rotating hoop.

ω

Figure 2.8.3. A ball in an off-center rotating hoop.

Exercises

¦ Exercise 2.8-1. Derive the equations of motion for a particle in a hoop
spinning about a line a distance ε off center. What can you say about the
equilibria as functions of ε and ω?

¦ Exercise 2.8-2. Derive the formula of Exercise 1.9-1 for the homoclinic
orbit (the orbit tending to the saddle point as t → ±∞) of a pendulum
ψ̈ + sinψ = 0. Do this using conservation of energy, determining the value
of the energy on the homoclinic orbit, solving for ψ̇ and then integrating.
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Figure 2.8.4. The phase portraits for the ball in the off-centered hoop as the
angular velocity increases.

(a)  ε = 0

(b)  ε > 0

Figure 2.8.5. The evolution of the potential for the ball in the centered and the
off-centered hoop.

¦ Exercise 2.8-3. Using the method of the preceding exercise, derive an
integral formula for the homoclinic orbit of the frictionless particle in a
rotating hoop.

¦ Exercise 2.8-4. Determine all equilibria of Duffing’s equation

ẍ− βx+ αx3 = 0,

where α and β are positive constants and study their stability. Derive a
formula for the two homoclinic orbits.

¦ Exercise 2.8-5. Determine the equations of motion and bifurcations for
a ball in a light rotating hoop, but this time the hoop is not forced to
rotate with constant angular velocity , but rather is free to rotate so that
its angular momentum µ is conserved. Check to see

if solution

is in guide¦ Exercise 2.8-6. Consider the pendulum shown in Figure 2.8.6. It is a
planar pendulum whose suspension point is being whirled in a circle with
angular velocity ω, by means of a vertical shaft, as shown. The plane of
the pendulum is orthogonal to the radial arm of length R. Ignore frictional
effects.
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θ

m

l g

l = pendulum length
m = pendulum bob mass

g = gravitational acceleration 

R = radius of circle

R

ω = angular velocity of shaft

ω
shaft

θ = angle of pendulum from 
       the downward vertical

Figure 2.8.6. A whirling pendulum.

(i) Using the notation in the figure, find the equations of motion of the
pendulum.

(ii) Regarding ω as a parameter, show that a supercritical pitchfork bi-
furcation of equilibria occurs as the angular velocity of the shaft is
increased.

2.9 The Poincaré-Melnikov Method and
Chaos

Recall from the introduction that in the simplest version of the Poincaré-
Melnikov method we are concerned with dynamical equations that perturb
a planar Hamiltonian system

ż = X0(z) (2.9.1)

to one of the form

ż = X0(z) + εX1(z, t), (2.9.2)

where ε is a small parameter, z ∈ R2, X0 is a Hamiltonian vector field
with energy H0, X1 is periodic with period T , and is Hamiltonian with
energy a T -periodic function H1. We assume that X0 has a homoclinic
orbit z(t) so z(t) → z0, a hyperbolic saddle point, as t → ±∞. Define the
Poincaré-Melnikov function by

M(t0) =
∫ ∞
−∞
{H0, H1}(z(t− t0), t) dt (2.9.3)

where { , } denotes the Poisson bracket.
There are two convenient ways of visualizing the dynamics of (2.9.2).

Introduce the Poincaré map P sε : R2 → R2, which is the time T map for
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(2.9.2) starting at time s. For ε = 0, the point z0 and the homoclinic orbit
are invariant under P s0 , which is independent of s. The hyperbolic saddle
z0 persists as a nearby family of saddles zε for ε > 0, small, and we are
interested in whether or not the stable and unstable manifolds of the point
zε for the map P sε intersect transversally (if this holds for one s, it holds
for all s). If so, we say (2.9.2) has horseshoes for ε > 0.

The second way to study (2.9.2) is to look directly at the suspended
system on R2×S1, where S1 is the circle; (2.9.2) becomes the autonomous
suspended system

ż = X0(z) + εX1(z, θ),

θ̇ = 1.
(2.9.4)

From this point of view, θ gets identified with time and the curve

γ0(t) = (z0, t)

is a periodic orbit for (2.9.4). This orbit has stable manifolds and unsta-
ble manifolds denoted W s

0 (γ0) and Wu
0 (γ0) defined as the set of points

tending exponentially to γ0 as t → ∞ and t → −∞, respectively. (See
Abraham, Marsden, and Ratiu [1988], Guckenheimer and Holmes [1983],
or Wiggins [1988, 1990, 1992] for more details.) In this example, they co-
incide:

W s
0 (γ0) = Wu

0 (γ0).

For ε > 0 the (hyperbolic) closed orbit γ0 perturbs to a nearby (hyper-
bolic) closed orbit which has stable and unstable manifolds W s

ε (γε) and
Wu
ε (γε). If W s

ε (γε) and Wu
ε (γε) intersect transversally, we again say that

(2.9.2) has horseshoes. These two definitions of admitting horseshoes are
readily seen to be equivalent.

Theorem 2.9.1 (Poincaré–Melnikov Theorem). Let the Poincaré–
Melnikov function be defined by (2.9.3). Assume M(t0) has simple zeros
as a T -periodic function of t0. Then, for sufficiently small ε, (2.9.2) has
horseshoes; that is, homoclinic chaos in the sense of transversal intersecting
separatrices.

Idea of the Proof. In the suspended picture, we use the energy function
H0 to measure the first-order movement of W s

ε (γε) at z(0) at time t0 as
ε is varied. Note that points of z(t) are regular points for H0 since H0 is
constant on z(t) and z(0) is not a fixed point. That is, the differential of H0

does not vanish at z(0). Thus, the values of H0 give an accurate measure
of the distance from the homoclinic orbit. If (zsε (t, t0), t) is the curve on
W s
ε (γε) that is an integral curve of the suspended system and has an initial

condition zsε (t0, t0) that is the perturbation of

W s
0 (γ0) ∩ {the plane t = t0}
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in the normal direction to the homoclinic orbit, then H0(zsε (t0, t0)) mea-
sures the normal distance. But

H0(zsε (τ+, t0))−H0(zsε (t0, t0))

=
∫ τ+

t0

d

dt
H0(zsε (t, t0)) dt

=
∫ τ+

t0

{H0, H0 + εH1}(zsε (t, t0), t) dt. (2.9.5)

From invariant manifold theory one learns that zsε (t, t0) converges expo-
nentially to γε(t), a periodic orbit for the perturbed system as t → +∞.
Notice from the right hand side of the first equality above that if zsε (t, t0)
is replaced by the periodic orbit γε(t), the result would be zero. Since the
convergence is exponential, one concludes that the integral is of order ε for
an interval from some large time to infinity. To handle the finite portion of
the integral, we use the fact that zsε (t, t0) is ε-close to z(t− t0) (uniformly
as t→ +∞), and that {H0, H0} = 0. Therefore, we see that

{H0, H0 + εH1}(zsε (t, t0), t) = ε{H0, H1}(z(t− t0), t) +O(ε2).

Using this over a large but finite interval [t0, t1] and the exponential close-
ness over the remaining interval [t1,∞), we see that (2.9.5) becomes

H0(zsε (τ+, t0))−H0(zsε (t0, t0))

= ε

∫ τ+

t0

{H0, H1}(z(t− t0), t) dt+O(ε2), (2.9.6)

where the error is uniformly small as τ+ →∞. Similarly,

H0(zuε (t0, t0))−H0(zuε (τ−, t0))

= ε

∫ t0

τ−

{H0, H1}(z(t− t0), t) dt+O(ε2). (2.9.7)

Again we use the fact that zsε (τ+, t0) → γε(τ+) exponentially fast, a
periodic orbit for the perturbed system as τ+ → +∞. Notice that since
the orbit is homoclinic, the same periodic orbit can be used for negative
times as well. Using this observation, we can choose τ+ and τ− such that
H0(zsε (τ+, t0))−H0(zuε (τ−, t0))→ 0 as τ+ →∞, τ− → −∞. Thus, adding
(2.9.6) and (2.9.7), and letting τ+ →∞, τ− → −∞, we get

H0(zuε (t0, t0))−H0(zsε (t0, t0))

= ε

∫ ∞
−∞
{H0, H1}(z(t− t0), t) dt+O(ε2). (2.9.8)
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The integral in this expression is convergent because the curve z(t − t0)
tends exponentially to the saddle point as t → ±∞, and because the dif-
ferential of H0 vanishes at this point. Thus, the integrand tends to zero
exponentially fast as t tends to plus and minus infinity.

Since the energy is a “good” measure of the distance between the points
zuε (t0, t0)) and zsε (t0, t0)), it follows that if M(t0) has a simple zero at time
t0, then zuε (t0, t0) and zsε (t0, t0) intersect transversally near the point z(0)
at time t0. ¥

If in (2.9.2), only X0 is Hamiltonian, the same conclusion holds if (2.9.3)
is replaced by

M(t0) =
∫ ∞
−∞

(X0 ×X1)(x(t− t0), t) dt (2.9.9)

where X0×X1 is the (scalar) cross product for planar vector fields. In fact,
X0 need not even be Hamiltonian if an area expansion factor is inserted.

Example A. Equation (2.9.9) applies to the forced damped Duffing equa-
tion

ü− βu+ αu3 = ε(γ cosωt− δu̇). (2.9.10)

Here the homoclinic orbits are given by (see Exercise 2.8-4)

u(t) = ±
√

2β
α

sech(
√
βt) (2.9.11)

and (2.9.9) becomes, after a residue calculation,

M(t0) = γπω

√
2
α

sech
(
πω

2
√
β

)
sin(ωt0)−

4δβ3/2

3α
, (2.9.12)

so one has simple zeros and hence chaos of the horseshoe type if

γ

δ
>

2
√

2β3/2

3ω
√
α

cosh
(
πω

2
√
β

)
(2.9.13)

and ε is small. ¨

Example B. Another interesting example, due to Montgomery [1985],
concerns the equations for superfluid 3He. These are the Leggett equations
and we shall confine ourselves to what is called the A phase for simplicity
(see Montgomery’s paper for additional results). The equations are

ṡ = −1
2

(
χΩ2

γ2

)
sin 2θ
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and

θ̇ =
(
γ2

χ

)
s− ε

(
γB sinωt+

1
2
Γ sin 2θ

)
. (2.9.14)

Here s is the spin, θ an angle (describing the “order parameter”), and
γ, χ, . . . are physical constants. The homoclinic orbits for ε = 0 are given
by

θ± = 2 tan−1(e±Ωt)− π/2 and s± = ±2
Ωe±2Ωt

1 + e±2Ωt
. (2.9.15)

One calculates the Poincaré-Melnikov function to be

M±(t0) = ∓πχωB
8γ

sech
(ωπ

2Ω

)
cosωt− 2

3
χ

γ2
ΩΓ, (2.9.16)

so that (2.9.14) has chaos in the sense of horseshoes if

γB

Γ
>

16
3π

Ω
ω

cosh
(πω

2Ω

)
(2.9.17)

and if ε is small. ¨

For references and information on higher-dimensional versions of the
method and applications, see Wiggins [1988]. We shall comment on some
aspects of this shortly. There is even a version of the Poincaré-Melnikov
method applicable to PDEs (due to Holmes and Marsden [1981]). One ba-
sically still uses formula (2.9.9) where X0×X1 is replaced by the symplectic
pairing between X0 and X1. However, there are two new difficulties in ad-
dition to standard technical analytic problems that arise with PDEs. The
first is that there is a serious problem with resonances. This can be dealt
with using the aid of damping. Second, the problem seems to be not re-
ducible to two dimensions; the horseshoe involves all the modes. Indeed,
the higher modes do seem to be involved in the physical buckling processes
for the beam model discussed next.

Example C. A PDE model for a buckled forced beam is

ẅ + w′′′ + Γw′ − κ
(∫ 1

0

[w′]2 dz
)
w′′ = ε(f cosωt− δẇ), (2.9.18)

where w(z, t), 0 ≤ z ≤ 1, describes the deflection of the beam,

· = ∂/∂t, ′ = ∂/∂z,

and Γ, κ, . . . are physical constants. For this case, one finds that if

(i) π2 < Γ < 4ρ3 (first mode is buckled);
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(ii) j2π2(j2π2 − Γ) 6= ω2, j = 2, 3, . . . (resonance condition);

(iii)
f

δ
>
π(Γ− π2)

2ω
√
κ

cosh
(

ω

2
√

Γ− ω2

)
(transversal zeros for M(t0));

(iv) δ > 0;

and ε is small, then (2.9.18) has horseshoes. Experiments (see Moon [1988])
showing chaos in a forced buckled beam provided the motivation which lead
to the study of (2.9.18). ¨

This kind of result can also be used for a study of chaos in a van der Waals
fluid (Slemrod and Marsden [1985]) and for soliton equations (see Birnir
[1986], Ercolani, Forest, and McLaughlin [1990], and Birnir and Grauer
[1994]). For example, in the damped, forced sine-Gordon equation one has
chaotic transitions between breathers and kink-antikink pairs and in the
Benjamin–Ono equation one can have chaotic transitions between solutions
with different numbers of poles.

More Degrees of Freedom. For Hamiltonian systems with two degrees
of freedom, Holmes and Marsden [1982a] show how the Melnikov method
may be used to prove the existence of horseshoes on energy surfaces in
nearly integrable systems. The class of systems studied have a Hamiltonian
of the form

H(q, p, θ, I) = F (q, p) +G(I) + εH1(q, p, θ, I) +O(ε2), (2.9.19)

where (θ, I) are action-angle coordinates for the oscillatorG;G(0) = 0, G′ >
0. It is assumed that F has a homoclinic orbit x(t) = (q(t), p(t)) and that

M(t0) =
∫ ∞
−∞
{F,H1} dt, (2.9.20)

the integral taken along (x(t − t0),Ωt, I) has simple zeros. Then (2.9.19)
has horseshoes on energy surfaces near the surface corresponding to the
homoclinic orbit and small I; the horseshoes are taken relative to a Poincaré
map strobed to the oscillator G. The paper by Holmes and Marsden [1982a]
also studies the effect of positive and negative damping. These results are
related to those for forced one degree of freedom systems since one can
often reduce a two degrees of freedom Hamiltonian system to a one degree
of freedom forced system.

For some systems in which the variables do not split as in (2.9.19), such
as a nearly symmetric heavy top, one needs to exploit a symmetry of the
system and this complicates the situation to some extent. The general
theory for this is given in Holmes and Marsden [1983] and was applied
to show the existence of horseshoes in the nearly symmetric heavy top; see
also some closely related results of Ziglin [1980a].
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This theory has been used by Ziglin [1980b] and Koiller [1985] in vor-
tex dynamics, for example, to give a proof of the non-integrability of the
restricted four vortex problem. Koiller, Soares and Melo Neto [1985] gives
applications to the dynamics of general relativity showing the existence of
horseshoes in Bianchi IX models. See Oh, Sreenath, Krishnaprasad, and
Marsden [1989] for applications to the dynamics of coupled rigid bodies.

Arnold [1964] extended the Poincaré-Melnikov theory to systems with
several degrees of freedom. In this case the transverse homoclinic manifolds
are based on KAM tori and allow the possibility of chaotic drift from one
torus to another. This drift, now known as Arnold diffusion is a much
studied ingredient in the study of chaos in Hamiltonian systems but its
theoretical foundation is still uncertain.

Instead of a single Melnikov function, in the multidemnsional case one
has a Melnikov vector given schematically by

M =


∫∞
−∞{H0, H1} dt∫∞
−∞{I1, H1} dt

. . .∫∞
−∞{In, H1} dt

 , (2.9.21)

where I1, . . . , In are integrals for the unperturbed (completely integrable)
system and where M depends on t0 and on angles conjugate to I1, . . . , In.
One requires M to have transversal zeros in the vector sense. This result was
given by Arnold for forced systems and was extended to the autonomous
case by Holmes and Marsden [1982b, 1983]; see also Robinson [1988]. These
results apply to systems such as a pendulum coupled to several oscillators
and the many vortex problems. It has also been used in power systems by
Salam, Marsden, and Varaiya [1983], building on the horseshoe case treated
by Kopell and Washburn [1982]. See also Salam and Sastry [1985]. There
have been a number of other directions of research on these techniques. For
example, Grundler [1985] developed a multidimensional version applicable
to the spherical pendulum and Greenspan and Holmes [1983] showed how
it can be used to study subharmonic bifurcations. See Wiggins [1988] for
more information.

Poincaré and Exponentially Small Terms. In Poincaré’s celebrated
memoir [1890] on the three-body problem, he introduced the mechanism of
transversal intersection of separatrices which obstructs the integrability of
the equations and the attendant convergence of series expansions for the
solutions. This idea has been developed by Birkhoff and Smale using the
horseshoe construction to describe the resulting chaotic dynamics. How-
ever, in the region of phase space studied by Poincaré, it has never been
proved (except in some generic sense that is not easy to interpret in specific
cases) that the equations really are nonintegrable. In fact, Poincaré him-
self traced the difficulty to the presence of terms in the separatrix splitting
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which are exponentially small. A crucial component of the measure of the
splitting is given by the following formula of Poincaré [1890, p. 223]:

J =
−8πi

exp
(

π√
2µ

)
+ exp

(
− π√

2µ

) ,
which is exponentially small (or beyond all orders) in µ. Poincaré was aware
of the difficulties that this exponentially small behavior causes; on page
224 of his article, he states: “En d’autres termes, si on regarde µ comme
un infiniment petit du premier ordre, la distance BB′, sans être nulle, est
un infiniment petit d’ordre infini. C’est ainsi que la fonction e−1/µ est un
infiniment petit d’ordre infini sans être nulle . . . Dans l’example particulier
que nous avons traité plus haut, la distance BB′ est du mème ordre de
grandeur que l’integral J , c’est à dire que exp(−π/√2µ).”

This is a serious difficulty that arises when one uses the Melnikov method
near an elliptic fixed point in a Hamiltonian system or in bifurcation prob-
lems giving birth to homoclinic orbits. The difficulty is related to those
described by Poincaré. Near elliptic points, one sees homoclinic orbits in
normal forms and after a temporal rescaling this leads to a rapidly os-
cillatory perturbation that is modeled by the following variation of the
pendulum equation:

φ̈+ sinφ = ε cos
(
ωt

ε

)
. (2.9.22)

If one formally computes M(t0) one finds:

M(t0, ε) = ±2π sech
(πω

2ε

)
cos
(
ωt0
ε

)
. (2.9.23)

While this has simple zeros, the proof of the Poincaré-Melnikov theorem is
no longer valid since M(t0, ε) is now of order ε−π/2ε and the error analysis
in the proof only gives errors of order ε2. In fact, no expansion in powers
of ε can detect exponentially small terms like ε−π/2ε.

Holmes, Marsden, and Scheurle [1988] and Delshams and Seara [1991]
show that (2.9.22) has chaos that is, in a suitable sense, exponentially small
in ε. The idea is to expand expressions for the stable and unstable manifolds
in a Perron type series whose terms are of order εkε−π/2ε. To do so, the
extension of the system to complex time plays a crucial role. One can
hope that since such results for (2.9.22) can be proved, it may be possible
to return to Poincaré’s 1890 work and complete the arguments he left
unfinished. In fact, these exponentially small phenomena is one reason that
the problem of Arnold diffusion is both hard and delicate.

To illustrate how exponentially small phenomena enter bifurcation prob-
lems, consider the problem of a Hamiltonian saddle node bifurcation

ẍ+ µx+ x2 = 0 (2.9.24)
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100 2.9 The Poincaré-Melnikov Method and Chaos

with the addition of higher-order terms and forcing:

ẍ+ µx+ x2 + h.o.t. = δf(t). (2.9.25)

The phase portrait of (2.9.24) is shown in Figure 2.9.1.

x x−µ

µ < 0 µ > 0

−µ

x
.

x
.

Figure 2.9.1. Phase portraits of ẍ+ µx+ x2 = 0.

The system (2.9.24) is Hamiltonian with

H(x, ẋ) =
1
2
ẋ2 +

1
2
µx2 +

1
3
x3. (2.9.26)

Let us first consider the system without higher-order terms:

ẍ+ µx+ x2 = δf(t). (2.9.27)

To study it, we rescale to blow up the singularity; let

x(t) = λξ(τ), (2.9.28)

where λ = |µ| and τ = t
√
λ. Letting ′ = d/dτ , we get

ξ′′ − ξ + ξ2 =
δ

µ2
f

(
τ√−µ

)
, µ < 0,

ξ′′ + ξ + ξ2 =
δ

µ2
f

(
τ√
µ

)
, µ > 0,

 (2.9.29)

The exponentially small estimates of Holmes, Marsden, and Scheurle [1988]
apply to (2.9.29). One gets exponentially small upper and lower estimates
in certain algebraic sectors of the (δ, µ) plane that depend on the nature
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of f . The estimates for the splitting have the form C(δ/µ2) exp(−π/
√
|µ|).

Now consider

ẍ+ µx+ x2 + x3 = δf(t). (2.9.30)

With δ = 0, there are equilibria at

x = 0, −r, or − µ

r
and ẋ = 0, (2.9.31)

where

r =
1 +
√

1− 4µ
2

, (2.9.32)

which is approximately 1 when µ ≈ 0. The phase portrait of (2.9.30) with
δ = 0 and µ = − 1

2 is shown in Figure 2.9.2. As µ passes through 0, the
small lobe in Figure 2.9.2 undergoes the same bifurcation as in Figure 2.9.2,
with the large lobe changing only slightly.

x
.

x

Figure 2.9.2. The phase portrait of ẍ− 1
2
x+ x2 + x3 = 0.

Again we rescale to give

ξ̈ − ξ + ξ2 − µξ3 =
δ

µ2
f

(
τ√−µ

)
, µ < 0,

ξ̈ + ξ + ξ2 + µξ3 =
δ

µ2
f

(
τ√
µ

)
, µ > 0.

 (2.9.33)

Notice that for δ = 0, the phase portrait is µ-dependent. The homoclinic
orbit surrounding the small lobe for µ < 0 is given explicitly in terms of ξ
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by

ξ(τ) =
4eτ(

eτ + 2
3

)2 − 2µ
, (2.9.34)

which is µ-dependent. An interesting technicality is that without the cubic
term, we get µ-independent double poles at t = ±iπ + log 2 − log 3 in the
complex τ -plane, while (2.9.34) has a pair of simple poles that splits these
double poles to the pairs of simple poles at

τ = ±iπ + log
(

2
3
± i
√

2λ
)
, (2.9.35)

where again λ = |µ|. (There is no particular significance to the real part,
such as log 2− log 3 in the case of no cubic term; this can always be gotten
rid of by a shift in the base point ξ(0).)

If a quartic term x4 is added, these pairs of simple poles will split into
quartets of branch points and so on. Thus, while the analysis of higher-order
terms has this interesting µ-dependence, it seems that the basic exponential
part of the estimates, namely

exp

(
− π√
|µ|

)
, (2.9.36)

remains intact.
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