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Hamiltonian Systems on Symplectic
Manifolds

Now we are ready to geometrize Hamiltonian mechanics to the context
of manifolds. First we make phase spaces nonlinear and then we study
Hamiltonian systems in this context.

5.1 Symplectic Manifolds

Definition 5.1.1. A symplectic manifold is a pair (P,)), where P is
a manifold and Q is a closed (weakly) nondegenerate two-form on P. If Q
18 strongly nondegenerate, we speak of a strong symplectic manifold.

As in the linear case, strong nondegeneracy of the two-form {2 means that
at each z € P, the bilinear form 2, : T,P x T, P — R is nondegenerate,
that is, 2, defines an isomorphism

Q) T.P —T;P.

For a (weak) symplectic form, the induced map Q° : X(P) — X*(P) be-
tween vector fields and one-forms is one-to-one, but in general is not sur-
jective. We will see later that € is required to be closed, that is, dQ2 = 0,
where d is the exterior derivative, so that the induced Poisson bracket sat-
isfies the Jacobi identity and so that the flows of Hamiltonian vector fields
will consist of canonical transformations. In coordinates z/ on P in the
finite-dimensional case, if Q = Qr;dz! A dz’ (sum over all I < J), then
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d2 = 0 becomes the condition

0Qry  rr 0k
0zK 0z7 0z1

= 0. (5.1.1)

Examples

(a) Symplectic Vector Spaces. If (Z,) is a symplectic vector space,
then it is also a symplectic manifold. The requirement d) = 0 is satisfied
automatically since 2 is a constant form (that is, Q(z) is independent of
z € 7). ¢

(b) The cylinder S* x R with coordinates (6, p) is a symplectic manifold
with Q = df A dp. ¢

(c) The torus T? with periodic coordinates (6, ¢) is a symplectic manifold
with Q = df A dp. ¢

(d) The two-sphere S? of radius r is symplectic with €2 the standard area
element Q = r?sin@df A dy on the sphere as the symplectic form. ¢

Given a manifold @, we will show in Chapter 6 that the cotangent bun-
dle T*@Q has a natural symplectic structure. When @ is the configura-
tion space of a mechanical system, T*@Q is called the momentum phase
space. This important example generalizes the linear examples with phase
spaces of the form W x W* that we studied in Chapter 2.

Darboux’ Theorem. The next result says that, in principle, every strong
symplectic manifold is, in suitable local coordinates, a symplectic vector
space. (By contrast, a corresponding result for Riemannian manifolds is
not true unless they have zero curvature; that is, are flat.)

Theorem 5.1.2 (Darboux’ Theorem). Let (P,) be a strong symplec-
tic manifold. Then in a neighborhood of each z € P, there is a local coor-
dinate chart in which Q is constant.

Proof. We can assume P = F and z = 0 € F, where E is a Banach
space. Let Q1 be the constant form equaling 2(0). Let ' = Q7 — Q and
Q= Q+ Y, for 0 < ¢ < 1. For each ¢, the bilinear form Q.(0) = Q(0)
is nondegenerate. Hence by openness of the set of linear isomorphisms of
E to E* and compactness of [0, 1], there is a neighborhood of 0 on which
Q; is strongly nondegenerate for all 0 < ¢t < 1. We can assume that this
neighborhood is a ball. Thus by the Poincaré lemma, ' = da for some
one-form «. Replacing « by a — a(0), we can suppose a(0) = 0. Define a
smooth time-dependent vector field X; by

iXtQt:—Oé,
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5.1 Symplectic Manifolds 143

which is possible since € is strongly nondegenerate. Since a(0) = 0 we get
X:(0) =0, and so from the local existence theory for ordinary differential
equations, there is a ball on which the integral curves of X; are defined for
a time at least one; see Abraham, Marsden, and Ratiu [1988], §4.1, for the
technical theorem. Let F; be the flow of X; starting at F, = identity. By
the Lie derivative formula for time-dependent vector fields, we have
dF*Q =F(£x,Q F*dQ
E( ) =F (£x,80) + gt

=F/dix,Q + FQ = Ff(d(—a) + Q') = 0.

Thus, Fi' = FiQo = Q, so Fy provides a chart transforming  to the
constant form . |

This proof is due to Moser [1965]. Weinstein [1971] noted that it gen-
eralizes to the infinite-dimensional strong symplectic case. Unfortunately,
many interesting infinite-dimensional symplectic manifolds are not strong.
In fact, the analogue of Darboux’s theorem is not valid for weak symplectic
forms. For an example, see Exercise 5.1-3, and for conditions under which
it is valid, see Marsden [1981]. See also Olver [1988]. For an equivariant
Darboux theorem and refernces, see Dellnitz and Melbourne [1993].

Corollary 5.1.3. If (P,Q) is a finite-dimensional symplectic manifold,
then P is even dimensional, and in a neighborhood of z € P there are local
coordinates (q*,... ,q",p1,.-. ,pn) (where dim P = 2n) such that

Q= "dq' Adp;. (5.1.2)

i=1

This follows from Darboux’s theorem and the canonical form for linear
symplectic forms. As in the vector space case, coordinates in which € takes
the above form are called canonical coordinates.

Corollary 5.1.4. If (P, Q) is a 2n-dimensional symplectic manifold, then
P is oriented by the Liouwville volume

(_1)n(n71)/2

A="——F—QN---AQ (n times). (5.1.3)
n!
In canonical coordinates (q,... ,q",p1,--. ,Pn), A has the expression
A=dg' A---ANdg" Ndpy A -+ A dp,,. (5.1.4)

Thus, if (P,) is a 2n-dimensional symplectic manifold, then (P, A) is
a volume manifold (that is, a manifold with a volume element). The
measure associated to A is called the Liouville measure. The factor
(=1)™"=1/2 /n1 is chosen so that in canonical coordinates, A has the ex-
pression (5.1.4).
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Exercises

Exercise 5.1-1. Show how to construct (explicitly) canonical coordi-
nates for the symplectic form Q = fu on S%, where p is the standard
area element and where f : S2 — R is a positive function.

Exercise 5.1-2 (Moser [1965]). Let 1o and p; be two volume elements
(nowhere vanishing n-forms) on the compact boundaryless n-manifold M
giving M the same orientation. Assume that [, po = [,, 1. Show that
there is a diffeomorphism ¢ : M — M such that ¢p*u; = po.

Exercise 5.1-3. (Requires some functional analysis) Prove that Dar-
boux’ theorem fails for the following weak symplectic form. Let H be a
real Hilbert space and S : H — H a compact, self-adjoint, and positive op-
erator whose range is dense in H, but not equal to H. Let A, = S+ ||z||*]
and

gx(e; ) = (Aze, f).

Let Q be the weak symplectic form on H x H associated to g. Show that
there is no coordinate chart about (0,0) € H x H on which € is constant.

Exercise 5.1-4. Use the method of proof of the Darboux Theorem to
show the following. Assume that ¢ and ; are two symplectic forms on
the compact manifold P such that [€],[2;] are the cohomology classes
of Qy and € respectively in H?(P;R). If for every ¢t € [0,1], the form
Q= (1—1)Q+ £ is non-degenerate, show that there is a diffeomorphism
@ : P — P such that ¢*Q; = Q.

Exercise 5.1-5. Prove the following Relative Darboux Theorem. Let
S be a submanifold of P and assume that 2y and ; are two strong sym-
plectic forms on P such that 4]|S = ©4]S. Then there is an open neigh-
borhood V of S in P and a diffeomorphism ¢ : V' — ¢(V') C P such that
]S = identity on S and ¢*Q; = Q. (Hint: Use Exercise 4.2-6.)

5.2 Symplectic Transformations

Definition 5.2.1. Let (P1,Q1) and (P2,Q2) be symplectic manifolds. A
C*®-mapping ¢ : P, — P» is called symplectic or canonical if

Recall that €27 = ¢*Q means that for each z € Py, and all v,w € T, Py,
we have the following identity:

le(vaw) = QQ@(Z)(Tz(P 0, Ty U}),
......................... 15 January 1998—17h14 ......... ... . ... o ..
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5.2 Symplectic Transformations 145

where €27, means 2; evaluated at the point z and where T is the tangent
(derivative) of ¢ at z.

If o : (P1,21) — (P2,82) is canonical, the property o*(a A ) = ¢*a A
p* [ implies that ¢*A = A; that is, ¢ also preserves the Liouville measure.
Thus we get the following:

Proposition 5.2.2. A smooth canonical transformation between symplec-
tic manifolds of the same dimension is volume preserving and is a local
diffeomorphism.

The last statement comes from the inverse function theorem: if ¢ is
volume preserving, its Jacobian determinant is 1, so ¢ is locally invertible.
It is clear that the set of canonical diffeomorphisms of P form a subgroup
of Diff(P), the group of all diffeomorphisms of P. This group, denoted
Diff can (P), plays a key role in the study of plasma dynamics.

If Q1 and Q are exact, say 3 = —d©; and Qy = —dOs, then (5.2.1) is
equivalent to

d(@*@g — @1) =0. (5.2.2)

Let M C P; be an oriented two manifold with boundary M. Then if
(5.2.2) holds, we get

o=/ d(sa*az—@l):/ (6705~ ©1),
M oM

that is,

/ "0y = O1. (5.2.3)
oM oM

Proposition 5.2.3. The map ¢ : P, — Py is canonical iff (5.2.3) holds
for every oriented two manifold M C Py with boundary OM .

The converse is proved by choosing M to be a small disk in P; and
using the statement: if the integral of a two-form over any small disk van-
ishes, then the form is zero. The latter assertion is proved by contradiction,
constructing a two-form on a two-disk whose coefficient is a bump func-
tion. Equation (5.2.3) is an example of an integral invariant. For more
information, see Arnold [1989] and Abraham and Marsden [1978].

Exercises

o Exercise 5.2-1. Let ¢ : R?® — R?" be a map of the form ¢(q,p) =
(¢,p+a(q)). Use the canonical one-form to determine when ¢ is symplectic.

o Exercise 5.2-2. Let T be the six torus with symplectic form

Q =db, Ndby + dis A dby + dBs N dbg.
......................... 15 January 1998—17h14 ......... ... . ... o ..
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Show that if ¢ : TS — T® is symplectic and M C T® is a compact oriented
four-manifold with boundary, then

/ @*(Q/\@):/ Qne,
oM oM
where © = 601 dfs + 05 dO, + 05 dbg.

5.3 Complex Structures and Kahler
Manifolds

This section develops the relation between complex and symplectic geom-
etry a little further. It may be omitted on a first reading.

Complex Structures. We begin with the case of vector spaces. By a
complex structure on a real vector space Z, we mean a linear map J :
Z — Z such that J? = —Identity. Setting iz = J(2) gives Z the structure
of a complex vector space.

Note that if Z is finite dimensional, the hypothesis on J implies that
(detJ)? = (=1)4™Z 50 dim Z must be an even number since detJ € R.
The complex dimension of Z is half the real dimension. Conversely, if Z is
a complex vector space, it is also a real vector space by restricting scalar
multiplication to the real numbers. In this case, Jz = iz is the complex
structure on Z. As before, the real dimension of Z is twice the complex
dimension since the vectors z and iz are linearly independent.

We have already seen that the imaginary part of a complex inner product
is a symplectic form. Conversely, if H is a real Hilbert space and ) is a
skew-symmetric weakly nondegenerate bilinear form on H, then there is a
complex structure J on H and a real inner product s such that

s(z,w) = —Q(Jz,w). (5.3.1)
The expression
h(z,w) = s(z,w) —iQ(z,w) (5.3.2)

defines a Hermitian inner product, and h or s is complete on H iff Q is
strongly nondegenerate. (See Abraham and Marsden [1978], p.173, for the
proof.) Moreover, given any two of (s,J,€2), there is at most one third
structure such that (5.3.1) holds.

If we identify C™ with R?" and write

Z = (Zla cee 7Zn) = (xl + 7:yla cee I + 'Lyn) = ((xlvyl)a ey ('rrmyn)))

then

—Im((z1,...,20), (21, ..., 2,)) = —Im(212] + - + 2,Z),)

—(Zyr — Yy + - T Yn — Tny,,).

......................... 15 January 1998—17h14 ......... ... . ... o ..



5.3 Complex Structures and Ké&hler Manifolds 147

Thus, the canonical symplectic form on R?” may be written
Q(z,2') = —Im (2, 2') = Re (iz, 2'), (5.3.3)

which, by (5.3.1), agrees with the convention that J : R?" — R?" is multi-
plication by 1.

An almost complex stucture J on a manifold M is a smooth tangent
bundle isomorphism J : TM — T M covering the identity map on M such
that for each point z € M, J, = J(2) : T.M — T, M is a complex structure
on the vector space T, M. A manifold with an almost complex structure is
called an almost complex manifold.

A manifold M is called a complex manifold if it admits an atlas
{(Uq; @)} whose charts ¢, : Uy, C M — E map to a complex Banach
space F and the transition functions @gop,! : 0o (UaNUg) — p5(UsNUg)
are holomorphic maps. The complex structure on E (multiplication by )
induces via the chart maps ¢, an almost complex structure on each chart
domain U,. Since the transition functions are biholomorphic diffeomor-
phisms, the almost complex structures on U, N Uy induced by ¢, and ¢g
coincide. This shows that a complex manifold is also almost complex. The
converse is not true.

If M is an almost complex manifold, 7, M is endowed with the struc-
ture of a complex vector space. A Hermitian metric on M is a smooth
assignment of a (possibly weak) complex inner product on T, M for each
z € M. As in the case of vector spaces, the imaginary part of the Hermitian
metric defines a non-degenerate (real) two-form on M. The real part of a
Hermitian metric is a Riemannian metric on M. If the complex inner prod-
uct on each tangent space is strongly nondegenerate, the metric is strong;
in this case both the real and imaginary parts of the Hermitian metric are
strongly nondegenerate over R.

Kiahler Manifolds. An almost complex manifold M with a Hermitian
metric (, ) is called a Kdhler manifold, if M is a complex manifold and
the two-form —Im (, ) is a closed two form on M. There is an equivalent
definition that is often useful: A Kéahler manifold is a smooth manifold
with a Riemannian metric g and an almost complex structure J such that
J. is g-skew for each z € M and such that J is covariantly constant with
respect to g. (One requires some Riemannian geometry to understand this
definition—it will not be required in what follows.) The important fact
used later on is the following;:

Any Kdhler manifold is also symplectic, with symplectic form
given by
Q. (v, w,) = (Jov,,w,) . (5.3.4)
In this second definition of Ké&hler manifolds, the condition d€2 = 0 follows

from J being covariantly constant. A strong Kdahler manifold is a Kahler
manifold whose Hermitian inner product is strong.

......................... 15 January 1998—17h14 ......... ... . ... o ..
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Projective Spaces. Any complex Hilbert space H is trivially a strong
Kahler manifold. As an example of a nontrivial Kahler manifold, we shall
consider the projectivization PH of a complex Hilbert space H. Recall
from Example (f) of §2.3 that H is a symplectic vector space relative to
the quantum mechanical symplectic form

Q(¥1,¥2) = —2hIm (1, 12) ,

where (, ) is the Hermitian inner product on H, & is Planck’s constant, and
1,99 € H. Recall also that PH is the space of complex lines through the
origin in ‘H. Denote by 7 : H\{0} — PH the canonical projection which
sends a vector ¢ € H\{0} to the complex line it spans, denoted by [¢)] when
thought of as a point in PH and by Ct¢ when interpreted as a subspace
of H. The space PH is a smooth complex manifold, 7 is a smooth map,
and the tangent space T}, PH is isomorphic to H/Cty. 7 is a surjective
submersion. (See Abraham, Marsden, Ratiu [1988], Chapter 3.) Since the
kernel of

Tdﬂr : H — T[w]]P)H

is C¢), the map Ty7|(Cy)* is a complex linear isomorphism from (Cip)t
to TyPH that depends on the chosen representative ¢ in [¢].
If U:H — H is a unitary operator (that is, U is invertible and

(Uthr, Urha) = (1h1,v2)

for all 91,12 € H), then the rule [U][¢] := [Ut] defines a biholomorphic
diffeomorphism on PH.

Proposition 5.3.1.
(i) 1/ [4] € PR, ]l = 1, and g1, 2 € (C)*, the formula

(Tym(p1), Tym(p2)) = 28 (1, ¥2) (5.3.5)

gives a well-defined strong Hermitian inner product on TjyPH, that
is, the left hand side does not depend on the choice of 1 in [¢]. The
dependence on )] is smooth and so (5.3.5) defines a Hermitian metric
on PH called the Fubini-Study metric. This metric is invariant
under the action of the maps [U], for all unitary operators U on H.

(ll) For [7[}] € ]P)H? W’” = 17 and P1, P2 € ((C/lz[})J_;
91 (Tym (1), Tym(p2)) = 2h Re (1, 2) (5.3.6)

defines a strong Riemannian metric on PH invariant under all trans-
formations [U].

......................... 15 January 1998—17h14 ......... ... . ... o ..
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(iii) For [¢] € PH, ||¢|| =1, and ¢1, 92 € (C)*,

Q) (Tym(p1), Ty (p2)) = —2h Im {1, p2) (5.3.7)

defines a strong symplectic form on PH invariant under all transfor-
mations [U].

Proof. We first prove! (i). If A € C\{0}, then m(A(¥) +tp)) = m(¢ +typ),

and since

(Tm)p) = r( +1Ag) prte) = Tme)

= —’/T(
o dt t=0

t=
we get (Thym)(Ap) = (Tym)(p). Thus, if | M| = ||¢|| = 1, it follows that
|A] = 1. We have by (5.3.5),

(Trgm) (A1), (Taym) (Ap2)) = 21 (Ap1, Apa) = 2h|A]? (o1, @2)
= 21 (p1,p2) = ((Tym) (1), (Tym)(p2)) -

This shows that the definition (5.3.5) of the Hermitian inner product is
independent on the normalized representative ¢ € [¢)] chosen in order to
define it. This Hermitian inner product is strong since it coincides with the
inner product on the complex Hilbert space (Ct))*.

A straightforward computation (see exercise 5.3-3) shows that for ¢ €
H\{0} and @1, p2 € H arbitrary, the Hermitian metric is given by

(Tym(pr), Tym(p2)) = 2kl (17 (1, 02) — 101172 (@1, %) (1, 2)). (5.3.8)

Since the right hand side is smooth in ¢ € H\{0} and this formula drops
to PH, it follows that (5.3.5) is smooth in [¢].
If U is a unitary map on H and [U] is the induced map on PH, we have

TlU]- Tym(e) = T[] Sy + 1)) = S[0]fw +t4]

t=0

= Tyypm(Uep).
t=0

t=0

d
= Yt
L1 + 1)
Therefore, since |[Uv|| = ||[¢|| = 1 and (Uyp;, U¥) = 0, we get by (5.3.5),

(T (U] - Tym(1), Tiy [U] - Tym(02)) = (Toym(Uepr), Tuym(Upz))
= (Uwp1,Up2) = (1, p2)
= (Tym(p1), Tym(p2))

LOne can give a conceptually cleaner, but more advanced approach to this process
using general reduction theory. The proof given here is by a direct argument.
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which proves the invariance of the Hermitian metric under the action of
the transformation [U].

Part (ii) is obvious as the real part of the Hermitian metric (5.3.5).

Finally we prove (iii). From the invariance of the metric it follows that
the form 2 is also invariant under the action of unitary maps, that is,
[U]*Q = Q. So, also [U]*dQ2 = d2. Now consider the unitary map Uy on H
defined by Uptp = v and Uy = —Identity on (Ct)*. Then from [Up]*2 =
we have for o1, @o, 3 € (Cip)*+

dQ([P])(Tym (1), Tym(p2), Tym(ps))
= dQ(W])(T[w] [Uo] 'Twﬂ(@l)aT[w] [Uo] 'TWT(S@)’ T[w] [Uo] “Tym(p3))-

But
Tiy[Uo] - Tym(p) = Tym(—p) = —Ty7(9),
which implies by trilinearity of d) that dQ2 = 0.
The symplectic form (2 is strongly nondegenerate since on TjyPH it

restricts to the corresponding quantum mechanical symplectic form on the
Hilbert space (Ci)t. [ |

The results above prove that PH is an infinite dimensional K&hler man-
ifold on which the unitary group U(H) acts by isometries. This can be
generalized to Grassmannian manifolds of finite (or infinite) dimensional
subspaces of H, and even more, to flag manifolds (see Besse [1987], Pressley
and Segal [1985]).

Exercises
Exercise 5.3-1.  On C", show that Q2 = —d©, where O(2)-w = 3 Im (2, w).

Exercise 5.3-2. Let P be a manifold that is both symplectic, with sym-
plectic form  and is Riemannian, with metric g.

(a) Show that P has an almost complex structure J such that Q(u,v) =
g(Ju,v) if and only if

Q(VF,v) = —g(XF,v)
for all F' € F(P).

(b) Under the hypothesis of (a), show that a Hamiltonian vector field
Xy is locally a gradient iff £v5 = 0.

o Exercise 5.3-3. Show that for any vectors 1,2 € H and ¢ # 0 the

Fubini-Study metric can be written:

(Tym (1), Tym(p2)) = 2h9] 72 ({pr, 2) = 19172 (01, %) (@, 02)).-
......................... 15 January 1998—17h14 ......... ... . ... o ..
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Conclude that the Riemannian metric and symplectic forms are given by

2h

9iw) (Typm(p1), Tym(p2)) = WRG(<¢17@2> 19117 = (1, ) (1, p2))

and

Q) (Tym(p1), Tym(p2)) = —ﬁlm(@l,wﬁ [911% = (o1, ) (10, p2)).

Exercise 5.3-4. Prove that d2 = 0 on PH directly without using the
invariance under the maps [U], for U a unitary operator on H.

Exercise 5.3-5. For C"*!, show that in a projective chart of CP" the
symplectic form (Q is given by:

(1+ 2" (do — (1 +|2[*)"to AD),

where d|z|? = 047 (explicitly, o = Z?:ll z;dZ;). Then show that dQ2 = 0.
Note the similarity between this formula and the corresponding one in
5.3-3.

Tudor: Reword
Ex 5.3-5
(confusion
over

5.4 Hamiltonian Systems coordinates) .

Tudor—---see
next page

Definition 5.4.1. Let (P,) be a symplectic manifold. A wvector field X
on P is called Hamiltonian if there is a function H : P — R such that

ixQ=dH,; (5.4.1)
that is, for all v € T, P, we have the identity
Q. (X(z),v) =dH(z) - v.

In this case we write Xg for X. The set of all Hamiltonian vector fields on
P is denoted Xgam (P). Hamilton’s equations are the evolution equations

In finite dimensions, Hamilton’s equations in canonical coordinates are

dq _ OH dp’ B 7(’9H
dt — 9p;,’ dt O’
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Vector Fields and Flows. A vector field X is called locally Hamilto-
nian if ix {2 is closed. This is equivalent to £xQ = 0, where £ x ) denotes
Lie differentiation of €2 along X, because

£xQ =1ixdQ +dixQ = dix .

If X is locally Hamiltonian, it follows from the Poincaré lemma that there
locally exists a function H such that ix2 = dH, so locally X = Xpg
and thus the terminology is consistent. Moreover, the flow ¢, of a locally
Hamiltonian vector field X satisfies ¢} = €2 since

d * *
%gotﬂzgot.ﬁxﬂzo,

and thus one gets the following;:

Proposition 5.4.2. The flow ¢; of a vector field X consists of symplectic
transformations (that is, for each t, o;Q = Q where defined) if and only if
X is locally Hamiltonian.

A constant vector field on the torus T? gives an example of a locally
Hamiltonian vector field that is not Hamiltonian. (See Exercise 5.4-1.)

Energy Conservation. If Xy is Hamiltonian with flow ¢, then

d * *
E(Ho%):gthH[H]:gotQ(XH,XH)zo, (5.4.2)

since ) is skew. Thus H oy is constant in ¢t. We have proved the following:

Proposition 5.4.3 (Conservation of Energy). If; is the flow of Xg
on the symplectic manifold P, then H o o, = H (where defined).

Transformation of Hamiltonian Systems. The same argument given
in the vector space case proves:

Proposition 5.4.4. A diffeomorphism ¢ : P, — Py of symplectic mani-
folds is symplectic if and only if it satisfies

¢ X = Xoyp (5.4.3)

for all functions H : U — R (such that X is defined) where U is any open
subset of Ps.

The same qualifications on technicalities pertinent to the infinite-dimen-
sional case that were discussed for vector spaces apply to the present con-
text as well. For instance, given H, there is no a priori guarantee that X
exists: we usually assume it abstractly and verify it in examples. Also, we
may wish to deal with Xg’s that have dense domains rather than every-
where defined smooth vector fields. These technicalities are important, but
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do not affect many of the main goals of this book. We shall, for simplic-
ity, deal only with everywhere defined vector fields and refer the reader
to Chernoff and Marsden [1974] and Marsden and Hughes [1983] for the
general case. We shall also tacitly restrict our attention to functions which
have Hamiltonian vector fields. Of course in the finite-dimensional case
these technical problems disappear.

Exercises

Exercise 5.4-1. Let X be a constant nonzero vector field on the two-
torus. Show that X is locally Hamiltonian but is not globally Hamiltonian.

Exercise 5.4-2. Show that the bracket of two locally Hamiltonian vector
fields on a symplectic manifold (P, Q) is globally Hamiltonian.

Exercise 5.4-3. Consider the equations on C? given by

2.11 = 71'11}121 + ipZQ + izl(a|zl|2 + b|22‘2),

Zo = —lWaoZo + 1qZ1 + i22(0|21‘2 + d|2’2‘2)

Show that this system is Hamiltonian iff p = ¢ and b = ¢ with

a b d
H = = (wa]22)® + wi|z1]*) — pRe(z122) — Z\zl|4 - §\zlzg|2 - Z\zg|4.

N —

Exercise 5.4-4. Let (P, Q) be a symplectic manifold and ¢ : § — P
an immersion. ¢ is called a coisotropic immersion if T;p(TsS) is a
coisotropic subspace of T, P for every s € S. This means that

[TS‘P(TSS)]Q(S) C Tsp(Ts5)
for every s € S (see Exercise 2.3-5). If (P, ) is a strong symplectic man-
ifold, show that ¢ : S — P is a coisotropic immersion if and only if

Xu(p(s)) € Tsp(TsS) for all s € S, all open neighborhoods U of ¢(s) in
P, and all smooth functions H : U — R satisfying H|p(S)NU = constant

5.5 Poisson Brackets on Symplectic
Manifolds

Analogous to the vector space treatment, we define the Poisson bracket
of two functions F,G : P — R by

{F,G}(z) = Q2)(Xr(2), Xa(2))- (5.5.1)

From Proposition 5.4.4 we get (see the proof of Proposition 2.7.5):
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Proposition 5.5.1. A diffeomorphism ¢ : P, — Ps is symplectic if and
only if

{F,G}op={Fop,Gop} (5.5.2)
for all functions F,G € F(U), where U is an arbitrary open subset of Ps.

Using this, Proposition 5.4.2 shows that

Proposition 5.5.2. If ¢, is the flow of a Hamiltonian vector field Xy
(or a locally Hamiltonian vector field), then

Pl G} = {pi F,p; G}

for all F,G € F(P) (or restricted to an open set if the flow is not every-
where defined).

Corollary 5.5.3. The following derivation identity holds:
Xu[{F, G} = {Xu[F],G} + {F, Xu[G]} (5.5.3)

where we use the notation Xy[F| = £x, F for the derivative of F in the
direction Xpg.

Proof. Differentiate the identity
e {F, G} = {pi F i G}

in t at t = 0, where ; is the flow of Xp. The left-hand side clearly gives
the left side of (5.5.3). To evaluate the right-hand side, first notice that

d d
Q= X = —| X,
g Xar@)] = 5| v
R a0,
= a . wr )=z
= (dXy[F])(2) = QX x 171 (2))-
Thus,
d
Therefore,
L iR eier = 20X (), Xpra(2)
dt —o P L'y Q4 - dt —o z i F Z), G 4
= Q. (Xxyr), Xa(2) + Q(XF(2), Xx41a1(2))
={XulF],G}(2) + {F, XulG]}(2). L
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Lie Algebras and Jacobi’s Identity. The above development leads to
important insight into Poisson brackets.

Proposition 5.5.4. The functions F(P) form a Lie algebra under the
Poisson bracket.

Proof. Since {F,G} is obviously real bilinear and skew-symmetric, the
only thing to check is Jacobi’s identity. From {F,G} = ix.Q(X¢g) =
dF(X¢) = Xg[F], we have {{F,G}, H} = Xg[{F, G}] and so by Corollary
5.5.3 we get

— ({F, H},G} + {F.{G, H}}, (5.5.4)

which is Jacobi’s identity. |

This derivation gives us additional insight: Jacobi’s identity is just the
infinitesimal statement of ¢, being canonical.

In the same spirit, one can check that if Q0 is a nondegenerate two-form
with the Poisson bracket defined by (5.5.1), then the Poisson bracket satis-
fies the Jacobi identity if and only if  is closed (see Exercise 5.5-1).

The Poisson bracket-Lie derivative identity

{F,G} = Xg[F] = —Xr[G] (5.5.5)

we derived in this proof will be useful.

Proposition 5.5.5. The set of Hamiltonian vector fields Xgam(P) is a
Lie subalgebra of X(P) and, in fact,

(Xr, Xa]l = —X(pay- (5.5.6)
Proof. As derivations,

[XF, Xg|[H) = XpXc[H] — X Xr[H)
= Xr[{H,G}] - Xc[{H, F}]
={{#,G}, F} - {{H,F},G}
= _{Hv {Fv G}} = _X{F,G}[H]a

by Jacobi’s identity. |

Proposition 5.5.6. We have

G (Fog) = {Fog, H) = (F.H}og, (5.5.7)

where @y 1s the flow of Xy and F € F(P).
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Proof. By (5.5.5) and the chain rule,

d
g Fowe)(z) = dF(pu(2)) - Xu(pe(2)) = {F, H} (e (2))-
Since ¢, is symplectic, this becomes

{F o, Hop}(2)

which also equals {F o ¢;, H}(z) by conservation of energy. This proves
(5.5.7). n

Equations in Poisson Bracket Form. Equation (5.5.7), often written
more compactly as

F={F H}, (5.5.8)

is called the equation of motion in Poisson bracket form. We indi-
cated in Chapter 1 why the formulation (5.5.8) is important.

Corollary 5.5.7. F € F(P) is a constant of the motion for Xy iff
{F,H} =0.

Proposition 5.5.8. Assume that the functions f,g, and {f,g} are inte-
grable relative to the Liouville volume A € Q2"(P) on a 2n-dimensional
symplectic manifold (P,Q). Then

/{fvg}A / fix, A**/ gix,A.

Proof. Since £x,Q = 0, it follows that £x A = 0 so that div(fX,) =
Xolf1 =1{f. 9} Therefore by Stokes’ theorem

/{f,g}A /le [XgA = /v'gfxA /dleA / fix, A

the second equality following by skew-symmetry of the Poisson bracket. W

Corollary 5.5.9. Assume that f,g,h € F(P) have compact support or
decay fast enough such that they and their Poisson brackets are L? in-
tegrable relative to the Liouwville volume on a 2n-dimensional symplectic
manifold (P,Q). Assume also that at least one of f and g vanish on OP,
if OP # @&. Then the L?-inner product is bi-invariant on the Lie algebra

(F(P).{.}). that is,
‘/HmHA:/UyMA
P P

Proof. From {hf,g} = h{f,g} + f{h,g} and Proposition 5.5.7,

0= [ rfgin= [ wirons [ singin
P P P
which proves the corollary. |
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Exercises

Exercise 5.5-1. Let () be a nondegenerate two-form on a manifold P.
Form Hamiltonian vector fields and the Poisson bracket using the same
definitions as in the symplectic case. Show that Jacobi’s identity holds if
and only if the two-form € is closed.

Exercise 5.5-2. Let P be a compact boundaryless symplectic manifold.
Show that the space of functions Fo(P) = {f € F(P) | [, fA =0} is a Lie
subalgebra of (F(P),{,}) isomorphic to the Lie algebra of Hamiltonian
vector fields on P .

Exercise 5.5-3. Using the complex notation 2/ = ¢’ + ip’, show that
the symplectic form on C™ may be written as

. n
_ ! k p g5k
Q= 3 Z dz" Ndz",
k=1
and the Poisson bracket may be written

2 & oF 0G 0G OF
{F’G}_Ez<@@_%@>'

Exercise 5.5-4. Let J: C? — R be defined by
1
J= (=1 - =),
Show that
{H,J} =0,

where H is given in Exercise 5.4-3.

Exercise 5.5-5. Let (P, ) be a 2n-dimensional symplectic manifold.
Show that the Poisson bracket may be defined by

{F,G}Q" = ~vdF AdG A Q"1

for a suitable constant ~.

Exercise 5.5-6. Let ¢ : S — P be a coisotropic immersion (see Exer-
cise 5.4-4). Let F, H : P — R be smooth functions such that d(¢*F)(s),
(¢*H)(s) vanish on (Ty¢) ([T (T:S)]?# ) for all s € S. Show that
©*{F, H} depends only on ¢*F and ¢*H.



