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6
Cotangent Bundles

In many mechanics problems, the phase space is the cotangent bundle
T ∗Q of a configuration space Q. There is an “intrinsic” symplectic struc-
ture on T ∗Q that can be described in various equivalent ways. Assume
first that Q is n-dimensional, and pick local coordinates (q1, . . . , qn) on
Q. Since (dq1, . . . , dqn) is a basis of T ∗qQ, we can write any α ∈ T ∗qQ
as α = pi dq

i. Then (q1, . . . , qn, p1, . . . , pn) are local coordinates on T ∗Q.
Define the canonical symplectic form on T ∗Q by

Ω = dqi ∧ dpi.

This defines a closed two-form Ω that can be checked to be independent of
the choice of coordinates (q1, . . . , qn). Observe that Ω is locally constant,
that is, is independent of the base point (q1, . . . , qn, p1, . . . , pn). In this
section we show how to do this construction intrinsically and we will study
this canonical symplectic structure in some detail.

6.1 The Linear Case

To motivate a coordinate independent definition of Ω, consider the case in
which Q is a vector space W (which could be infinite dimensional), so that
T ∗Q = W × W ∗. We have already described the canonical two-form on
W ×W ∗:

Ω(w,α)((u, β), (v, γ)) = 〈γ, u〉 − 〈β, v〉 , (6.1.1)
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where (w,α) ∈ W ×W ∗ is the base point, u, v ∈ W , and β, γ ∈ W ∗. This
canonical two-form will be constructed from the canonical one-form Θ,
defined as follows:

Θ(w,α)(u, β) = 〈α, u〉 . (6.1.2)

The next proposition shows that the canonical two-form (6.1.1) is exact:

Ω = −dΘ. (6.1.3)

We begin with a computation that reconciles these formulas with their
coordinate expressions.

Proposition 6.1.1. In the finite-dimensional case the symplectic form Ω
defined by (6.1.1) can be written Ω = dqi ∧ dpi in coordinates q1, . . . , qn on
W and corresponding dual coordinates p1, . . . , pn on W ∗. The associated
canonical one-form is given by Θ = pi dq

i and (6.1.3) holds.

Proof. If (q1, . . . , qn, p1, . . . , pn) are coordinates on T ∗W then(
∂

∂q1
, . . . ,

∂

∂qn
,
∂

∂p1
, . . . ,

∂

∂pn

)
denotes the induced basis for T(w,α)(T ∗W ), and (dq1, . . . , dqn, dp1, . . . , dpn)
denotes the associated dual basis of T ∗(w,α)(T

∗W ). Write

(u, β) =
(
uj

∂

∂qj
, βj

∂

∂pj

)
and similarly for (v, γ). Hence

(dqi ∧ dpi)(w,α)((u, β), (v, γ)) = (dqi ⊗ dpi − dpi ⊗ dqi)((u, β), (v, γ))

= dqi(u, β)dpi(v, γ)− dpi(u, β)dqi(v, γ)

= uiγi − βivi.

Also, Ω(w,α)((u, β), (v, γ)) = γ(u)− β(v) = γiu
i − βivi. Thus,

Ω = dqi ∧ dpi.

Similarly,

(pi dqi)(w,α)(u, β) = αi dq
i(u, β) = αiu

i,

and

Θ(w,α)(u, β) = α(u) = αiu
i.

Comparing, we get Θ = pi dq
i. Therefore,

−dΘ = −d(pi dqi) = dqi ∧ dpi = Ω. ¥
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To verify (6.1.3) for the infinite-dimensional case, use (6.1.2) and the
second formula 6 of the table at the end of §4.4 to give

dΘ(w,α)((u1, β1), (u2, β2)) = [DΘ(w,α) · (u1, β1)] · (u2, β2)
− [DΘ(w,α) · (u2, β2)] · (u1, β1)

= 〈β1, u2〉 − 〈β2, u1〉 ,

since DΘ(w,α) · (u, β) = 〈β, ·〉. But this equals −Ω(w,α)((u1, β1), (u2, β2)).
To give an intrinsic interpretation to Θ, let us prove that

Θ(w,α) · (u, β) =
〈
α, T(w,α)πW (u, β)

〉
, (6.1.4)

where πW : W ×W ∗ →W is the projection. Indeed (6.1.4) coincides with
(6.1.2) since T(w,α)πW : W ×W ∗ →W is the projection on the first factor.

Exercises

¦ Exercise 6.1-1 (Jacobi–Haretu Coordinates). Consider the config-
uration space Q = R3×R3×R3 with elements denoted r1, r2, and r3. Call
the conjugate momenta p1,p2,p3 and equip the phase space T ∗Q with the
canonical symplectic structure Ω. Let j = p1 + p2 + p3. Let r = r2 − r1

and let s = r3 − 1
2 (r1 + r2). Show that the form Ω pulled back to the level

sets of j has the form Ω = dr ∧ dπ + ds ∧ dσ, where the variables π and σ
are defined by π = 1

2 (p2 − p1) and σ = p3.

6.2 The Nonlinear Case

Definition 6.2.1. Let Q be a manifold. We define Ω = −dΘ, where Θ
is the one-form on T ∗Q defined analogous to (6.1.4), namely

Θβ(v) = 〈β, TπQ · v〉 , (6.2.1)

where β ∈ T ∗Q, v ∈ Tβ(T ∗Q), πQ : T ∗Q → Q is the projection, and
TπQ : T (T ∗Q)→ TQ is the tangent map of πQ.

The computations in Proposition 6.1.1 show that (T ∗Q,Ω = −dΘ) is
a symplectic manifold; indeed, in local coordinates with (w,α) ∈ U ×W ∗,
where U is open in W , and where (u, β), (v, γ) ∈ W ×W ∗, the two-form
Ω = −dΘ is given by

Ω(w,α)((u, β), (v, γ)) = γ(u)− β(v). (6.2.2)

Darboux’s theorem and its corollary can be interpreted as asserting that
any (strong) symplectic manifold locally looks like W×W ∗ in suitable local
coordinates.
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Hamiltonian Vector Fields. For a function H : T ∗Q→ R, the Hamil-
tonian vector field XH on the cotangent bundle T ∗Q is given in canonical
cotangent bundle charts U ×W ∗, where U is open in W , by

XH(w,α) =
(
δH

δα
,−δH

δw

)
. (6.2.3)

Indeed, denoting XH(w,α) = (w,α, v, γ), for any (u, β) ∈W ×W ∗ we have

dH(w,α) · (u, β) = DwH(w,α) · u+ DαH(w,α) · β

=
〈
δH

δw
, u

〉
+
〈
β,
δH

δα

〉
(6.2.4)

which, by definition and (6.2.2), equals

Ω(w,α)(XH(w,α), (u, β)) = 〈β, v〉 − 〈γ, u〉 . (6.2.5)

Comparing (6.2.4) and (6.2.5) gives (6.2.3). In finite dimensions, (6.2.3) is
the familiar right-hand side of Hamilton’s equations.

Poisson Brackets. Formula (6.2.3) and the definition of the Poisson
bracket show that in canonical cotangent bundle charts,

{f, g}(w,α) =
〈
δf

δw
,
δg

δα

〉
−
〈
δg

δw
,
δf

δα

〉
, (6.2.6)

which in finite dimensions becomes

{f, g}(qi, pi) =
n∑
i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (6.2.7)

Pull Back Characterization. Another characterization of the canoni-
cal one-form that is sometimes useful is the following:

Proposition 6.2.2. Θ is the unique one-form on T ∗Q such that

α∗Θ = α (6.2.8)

for any local one-form α on Q, where, on the left-hand side, α is regarded
as a map (of some open subset of) Q to T ∗Q.

Proof. In finite dimensions, if α = αi(qj) dqi and Θ = pi dq
i, then to

calculate α∗Θ means that we substitute pi = αi(qj) into Θ, a process which
clearly gives back α, so α∗Θ = α. The general argument is as follows. If Θ
is the canonical one-form on T ∗Q, and v ∈ TqQ, then

(α∗Θ)q · v=Θα(q) · Tqα(v) =
〈
α(q), Tα(q)πQ(Tqα(v))

〉
=〈α(q), Tq(πQ ◦ α)(v)〉 = α(q) · v
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since πQ ◦ α = identity on Q.
For the converse, assume that Θ is a one-form on T ∗Q satisfying (6.2.8).

We will show that it must then be the canonical one-form (6.2.1). In fi-
nite dimensions this is straightforward: if Θ = Ai dq

i + Bi dpi for Ai, Bi

functions of (qj , pj), then

α∗Θ = (Ai ◦ α) dqi + (Bi ◦ α) dαi =
(
Aj ◦ α+ (Bi ◦ α)

∂αi
∂qj

)
dqj

which equals α = αi dq
i iff

Aj ◦ α+ (Bi ◦ α)
∂αi
∂qj

= αj .

Since this must hold for all αj , putting α1, . . . , αn constant it follows that
Aj ◦ α = αj , that is, Aj = pj . Therefore, the remaining equation is

(Bi ◦ α)∂αi/∂qj = 0

for any αi; choosing αi(q1, . . . , qn) = qi0 + (qi − qi0)p
0
i (no sum) implies

0 = (Bj ◦ α)(q1
0 , . . . , q

n
0 ) = p0

j for all (qj0, p
0
j ), that is, Bj = 0 and thus

Θ = pi dq
i.1 ¥

Exercises

¦ Exercise 6.2-1. Let N be a submanifold of M and denote by ΘN and
ΘM the canonical one-forms on the cotangent bundles πN : T ∗N → N and
πM : T ∗M →M , respectively. Let π : (T ∗M)|N → T ∗N be the projection
defined by π(αn) = αn|TnN , where n ∈ N and αn ∈ T ∗nM . Show that
π∗ΘN = i∗ΘM , where i : (T ∗M)|N → T ∗M is the inclusion.

¦ Exercise 6.2-2. Let f : Q→ R and X ∈ X(T ∗Q). Show that

Θ(X) ◦ df = X[f ◦ πQ] ◦ df.

1In infinite dimensions, the proof is slightly different. We will show that if (6.2.8)
holds then Θ is locally given by (6.1.4) and thus it is the canonical one-form. If U ⊂ E
is the chart domain the Banach space E modeling Q for any v ∈ E we have

(α∗Θ)u · (u, v) = Θ(u, α(u)) · (v,Dα(u) · v),

where α is given locally by u 7→ (u, α(u)) for α : U → E∗. Thus (6.2.8) is equivalent to

Θ(u,α(u)) · (v,Dα(u) · v) = 〈α(u), v〉

which would imply (6.1.4) and hence Θ being the canonical one-form, provided we can
show that for prescribed γ, δ ∈ E∗, u ∈ U, v ∈ E there is an α : U → E∗ such that
α(u) = γ,Dα(u) · v = δ. Such a mapping is constructed in the following way. For v = 0
choose α(u) to equal γ for all u. For v 6= 0, by the Hahn-Banach theorem one can find
a ϕ ∈ E∗ such that ϕ(v) = 1. Now set α(x) = γ − ϕ(u)δ + ϕ(x)δ.]
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¦ Exercise 6.2-3. Let Q be a given configuration manifold and let the
extended phase space be defined by (T ∗Q)×R. Given a time dependent
vector field X on T ∗Q, extend it to a vector field X̃ on (T ∗Q) × R by
X̃ = (X, 1).

Let H be a (possibly time-dependent) function on (T ∗Q)× R and set

ΩH = Ω + dH ∧ dt,
where Ω is the canonical two-form. Show that X is the Hamiltonian vector
field for H if and only if

iX̃ΩH = 0.

¦ Exercise 6.2-4. Give an example of a symplectic manifold (P,Ω), where
Ω is exact, but P is not a cotangent bundle.

6.3 Cotangent Lifts

We now describe an important way to create symplectic transformations
on cotangent bundles.

Definition 6.3.1. Given two manifolds Q and S and a diffeomorphism
f : Q→ S, the cotangent lift T ∗f : T ∗S → T ∗Q of f is defined by

〈T ∗f(αs), v〉 = 〈αs, (Tf · v)〉 , (6.3.1)

where

αs ∈ T ∗s S, v ∈ TqQ, and s = f(q).

The importance of this construction is that T ∗f is guaranteed to be
symplectic; it is often called a “point transformation” because it arises
from a diffeomorphism on points in configuration space. Notice that while
Tf covers f , T ∗f covers f−1. Denote by πQ : T ∗Q→ Q and πS : T ∗S → S,
the canonical cotangent bundle projections.

Proposition 6.3.2. A diffeomorphism ϕ : T ∗S → T ∗Q preserves the
canonical one-forms ΘQ and ΘS on T ∗Q and T ∗S, respectively, if and
only if ϕ is the cotangent lift T ∗f of some diffeomorphism f : Q→ S.

Proof. First assume that f : Q → S is a diffeomorphism. Then for
arbitrary β ∈ T ∗S and v ∈ Tβ(T ∗S), we have

((T ∗f)∗ΘQ)β · v = (ΘQ)T∗f(β) · TT ∗f(v)
= 〈T ∗f(β), (TπQ ◦ TT ∗f) · v〉
= 〈β, T (f ◦ πQ ◦ T ∗f) · v〉
= 〈β, TπS · v〉 = ΘSβ · v,

since f ◦ πQ ◦ T ∗f = πS . ¥
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Conversely, assume that ϕ∗ΘQ = ΘS , that is,

〈ϕ(β), T (πQ ◦ ϕ)(v)〉 = 〈β, TπS(v)〉 (6.3.2)

for all β ∈ T ∗S and v ∈ Tβ(T ∗S). Since ϕ is a diffeomorphism, the range
of Tβ(πQ ◦ ϕ) is TπQ(ϕ(β))Q, so that letting β = 0 in (6.3.2) implies that
ϕ(0) = 0. Arguing similarly for ϕ−1 instead of ϕ, we conclude that ϕ
restricted to the zero section S of T ∗S is a diffeomorphism onto the zero
section Q of T ∗Q. Define f : Q → S by f = ϕ−1|Q. We will show below
that ϕ is fiber-preserving or, equivalently, that f ◦ πQ = πS ◦ϕ−1. For this
we need the following:

Lemma 6.3.3. Define the flow FQt on T ∗Q by FQt (α) = etα and let VQ
be the vector field it generates. Then

〈ΘQ, VQ〉 = 0, £VQΘQ = ΘQ, and iVQΩQ = −ΘQ. (6.3.3)

Proof. Since FQt is fiber-preserving, VQ will be tangent to the fibers and
hence TπQ ◦ VQ = 0. This implies by (6.2.1) that 〈ΘQ, VQ〉 = 0. To prove
the second formula, note that πQ ◦ FQt = πQ. Let α ∈ T ∗qQ, v ∈ Tα(T ∗Q),
and Θα denote ΘQ evaluated at α. We have

((FQt )∗Θ)α · v = ΘFQt (α) · TF
Q
t (v)

=
〈
FQt (α), (TπQ ◦ TFQt )(v)

〉
=
〈
etα, T (πQ ◦ FQt )(v)

〉
= et 〈α, TπQ(v)〉 = etΘα · v,

that is,

(FQt )∗ΘQ = etΘQ.

Taking the derivative relative to t at t = 0 yields the second formula.
Finally, the first two formulas imply

iVQΩQ = −iVQdΘQ = −£VQΘQ + diVQΘQ = −ΘQ. H

Continuing the proof of the proposition, note that by (6.3.3) we have

iϕ∗VQΩS = iϕ∗VQϕ
∗ΩQ = ϕ∗(iVQΩQ)

= −ϕ∗ΘQ = −ΘS = iVSΩS ,

so that weak nondegeneracy of ΩS implies ϕ∗VQ = VS . Thus ϕ commutes
with the flows FQt and FSt , that is, for any β ∈ T ∗S we have ϕ(etβ) =
etϕ(β). Letting t→ −∞ in this equality implies (ϕ ◦ πS)(β) = (πQ ◦ϕ)(β)
since etβ → πS(β) and etϕ(β)→ (πQ ◦ ϕ)(β) for t→ −∞. Thus πQ ◦ ϕ =
ϕ ◦ πS , or f ◦ πQ = πS ◦ ϕ−1.
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Finally, we show that T ∗f = ϕ. For β ∈ T ∗S, v ∈ Tβ(T ∗S), (6.3.2) gives

〈T ∗f(β), T (πQ ◦ ϕ)(v)〉 = 〈β, T (f ◦ πQ ◦ ϕ)(v)〉
= 〈β, TπS(v)〉 = (ΘS)β · v
= (ϕ∗ΘQ)β · v = (ΘQ)ϕ(β) · Tβϕ(v)
= 〈ϕ(β), Tβ(πQ ◦ ϕ)(v)〉 ,

which shows that T ∗f = ϕ since the range of Tβ(πQ ◦ ϕ) is the whole
tangent space at (πQ ◦ ϕ)(β) to Q. ¥

In finite dimensions, the first part of this proposition can be seen in
coordinates as follows. Write (s1, . . . , sn) = f(q1, . . . , qn) and define

pj =
∂si

∂qj
ri, (6.3.4)

where (q1, . . . , qn, p1, . . . , pn) are cotangent bundle coodinates on T ∗Q and
(s1, . . . , sn, r1, . . . , rn) on T ∗S. Since f is a diffeomorphism, it determines
the qi in terms of the sj , say qi = qi(s1, . . . , sn), so both qi and pj are
functions of (s1, . . . , sn, r1, . . . , rn). The map T ∗f is given by

(s1, . . . , sn, r1, . . . , rn) 7→ (q1, . . . , qn, p1, . . . , pn). (6.3.5)

To see that (6.3.5) preserves the canonical one-form, use the chain rule and
(6.3.4):

ri ds
i = ri

∂si

∂qk
dqk = pk dq

k. (6.3.6)

Note that if f and g are diffeomorphisms of Q, then

T ∗(f ◦ g) = T ∗g ◦ T ∗f, (6.3.7)

that is, the cotangent lift switches the order of compositions; in fact, it is
useful to think of T ∗f as the adjoint of Tf .

Exercises

¦ Exercise 6.3-1. The Lorentz group £ is the group of invertible linear
transformations of R4 to itself that preserve the quadratic form x2 + y2 +
z2− c2t2, where c is a constant, the speed of light. Describe all elements of
this group. Let Λ0 denote one of these transformations. Map £ to itself by
Λ 7→ Λ0Λ. Calculate the cotangent lift of this map.

¦ Exercise 6.3-2. We have shown that a transformation of T ∗Q is the
cotangent lift of a diffeomorphism of configuration space if and only if it
preserves the canonical one-form. Find this result in Whittaker’s book.
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6.4 Lifts of Actions

A left action of a group G on a manifold M associates to each group
element g ∈ G a diffeomorphism Φg of M , such that Φgh = Φg ◦Φh. Thus,
the collection of Φg’s is a group of transformations of M . If we replace the
condition Φgh = Φg ◦ Φh by Ψgh = Ψh ◦ Ψg we speak of a right action .
We often write Φg(m) = g ·m and Ψg(m) = m · g for m ∈M .

Definition 6.4.1. Let Φ be an action of a group G on a manifold Q. The
right lift Φ∗ of the action Φ to the symplectic manifold T ∗Q is the right
action defined by the rule

Φ∗g(α) = (T ∗g−1·qΦg)(α), (6.4.1)

where g ∈ G,α ∈ T ∗qQ, and T ∗Φg is the cotangent lift of the diffeomorphism
Φg : Q→ Q.

By (6.3.7), we see that

Φ∗gh = T ∗Φgh = T ∗(Φg ◦ Φh) = T ∗Φh ◦ T ∗Φg = Φ∗h ◦ Φ∗g (6.4.2)

so Φ∗ is a right action. To get a left action , denoted Φ∗ and called the
left lift of Φ, one sets

(Φ∗)g = T ∗g·q(Φg−1). (6.4.3)

In either case these lifted actions are actions by canonical transformations
because of Proposition 6.3.2. We shall return to the study of actions of
groups after we study Lie groups in Chapter 9.

Examples

(a) For a system of N particles in R3, we choose the configuration space
Q = R3N . We write (qj) for an N -tuple of vectors labeled by j = 1, . . . , N .
Similarly, elements of the momentum phase space P = T ∗R3N ∼= R6N ∼=
R3N × R3N are denoted (qj ,pj). Let the additive group G = R3 of trans-
lations act on Q according to

Φx(qj) = qj + x, where x ∈ R3. (6.4.4)

Each of the N position vectors qj is translated by the same vector x.
Lifting the diffeomorphism Φx : Q→ Q, we obtain an action Φ∗ of G on

P . We assert that

Φ∗x(qj ,pj) = (qj − x,pj). (6.4.5)

To verify (6.4.5), observe that TΦx : TQ→ TQ is given by

(qi, q̇j) 7→ (qi + x, q̇j) (6.4.6)

so its dual is (qi,pj) 7→ (qi − x,pj). ¨
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(b) Consider the action of GL(n,R), the group of n×n invertible matri-
ces, or more properly, the group of invertible linear transformations of Rn
to itself, on Rn given by

ΦA(q) = Aq. (6.4.7)

The group of induced canonical transformations of T ∗Rn to itself is given
by

Φ∗A(q,p) = (A−1q, ATp), (6.4.8)

which is readily verified. Notice that this reduces to the same transforma-
tion of q and p when A is orthogonal. ¨

Exercises

¦ Exercise 6.4-1. Let the multiplicative group R\{0} act on Rn by Φλ(q) =
λq. Calculate the cotangent lift of this action.

6.5 Generating Functions

Consider a symplectic diffeomorphism ϕ : T ∗Q1 → T ∗Q2 described by
functions

pi = pi(qj , sj), ri = ri(qj , sj), (6.5.1)

where (qi, pi) and (sj , rj) are cotangent coordinates on T ∗Q1 and on T ∗Q2,
respectively. In other words, assume that we have a map

Γ : Q1 ×Q2 → T ∗Q1 × T ∗Q2 (6.5.2)

whose image is the graph of ϕ. Let Θ1 be the canonical one-form on T ∗Q1

and Θ2 be that on T ∗Q2. By definition,

d(Θ1 − ϕ∗Θ2) = 0. (6.5.3)

This implies, in view of (6.5.1), that

pi dq
i − ri dsi (6.5.4)

is closed. Restated, Γ∗(Θ1−Θ2) is closed. This holds if (and implies locally
by the Poincaré lemma)

Γ∗(Θ1 −Θ2) = dS (6.5.5)
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for a function S(q, s). In coordinates, (6.5.5) reads

pi dq
i − ri dsi =

∂S

∂qi
dqi +

∂S

∂si
dsi (6.5.6)

which is equivalent to

pi =
∂S

∂qi
, ri = − ∂S

∂si
. (6.5.7)

One calls S a generating function for the canonical transformation. With
generating functions of this sort, one may run into singularities even with
the identity map! See Exercise 6.5-1.

Presupposed relations other than (6.5.1) lead to different conclusions
than (6.5.7). Point transformations are generated in this sense; if S(qi, rj) =
sj(q)rj , then

si =
∂S

∂ri
and pi =

∂S

∂qi
. (6.5.8)

(Here one writes pi dqi + si dri = dS.)
In general, consider a diffeomorphism ϕ : P1 → P2 of one symplectic

manifold (P1,Ω1) to another (P2,Ω2) and denote the graph of ϕ, by Γ(ϕ) ⊂
P1×P2. Let iϕ : Γ(ϕ)→ P1×P2 be the inclusion and let Ω = π∗1Ω1−π∗2Ω2,
where πi : P1×P2 → Pi is the projection. One verifies that ϕ is symplectic
if and only if i∗ϕΩ = 0. (Indeed, since π1 ◦ iϕ is the projection restricted to
Γ(ϕ) and π2 ◦ iϕ = ϕ ◦ π1 on Γ(ϕ), it follows that

i∗ϕΩ = (π1|Γ(ϕ))∗(Ω1 − ϕ∗Ω2),

and hence i∗ϕΩ = 0 iff ϕ is symplectic because (π1|Γ(ϕ))∗ is injective.) In
this case, one says Γ(ϕ) is an isotropic submanifold of P1 ×P2 (equipped
with the symplectic form Ω); in fact, since Γ(ϕ) has half the dimension of
P1 × P2, it is maximally isotropic, or a Lagrangian manifold .

Now suppose one chooses a form Θ such that Ω = −dΘ. Then i∗ϕΩ =
−di∗ϕΘ = 0, so locally on Γ(ϕ) there is a function S : Γ(ϕ)→ R such that

i∗ϕΘ = dS. (6.5.9)

This defines the generating function of the canonical transformation ϕ.
Since Γ(ϕ) is diffeomorphic to P1 and also to P2 we can regard S as a
function on P1 or P2. If P1 = T ∗Q1 and P2 = T ∗Q2, we can equally well
regard (at least locally) S as defined on Q1 ×Q2. In this way, the general
construction of generating functions reduces to the case in equations (6.5.7)
and (6.5.8) above. By making other choices of Q, the reader can construct
other generating functions and reproduce formulas in, for instance, Gold-
stein [1980] or Whittaker [1927]. The approach here is based on Sniatycki
and Tulczyjew [1971].
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Generating functions play an important role in Hamilton-Jacobi theory,
in the quantum-classical mechanical relationship (where S plays the role of
the quantum mechanical phase), and in numerical integration schemes for
Hamiltonian systems. We shall see a few of these aspects later on.

Exercises

¦ Exercise 6.5-1. Show that

S(qi, sj , t) =
1
2t
‖q− s‖2

generates a canonical transformation that is the identity at t = 0.

¦ Exercise 6.5-2. (A first-order symplectic integrator). Given H, let

S(qi, rj , t) = rkq
k − tH(qi, rj).

Show that S generates a canonical transformation which is a first-order
approximation to the flow of XH for small t.

6.6 Fiber Translations and Magnetic Terms

Momentum Shifts. We saw above that cotangent lifts provide a ba-
sic construction of canonical transformations. Fiber translations provide a
second.

Proposition 6.6.1 (Momentum Shifting Lemma). Let A be a one-
form on Q and let tA : T ∗Q → T ∗Q be defined by αq 7→ αq + A(q), where
αq ∈ T ∗qQ. Let Θ be the canonical one-form on T ∗Q. Then

t∗AΘ = Θ + π∗QA, (6.6.1)

where πQ : T ∗Q→ Q is the projection. Hence

t∗AΩ = Ω− π∗QdA, (6.6.2)

where Ω = −dΘ is the canonical symplectic form. Thus, tA is a canonical
transformation if and only if dA = 0.

Proof. We prove this using a finite-dimensional coordinate computation.
The reader is asked to supply the coordinate-free and infinite-dimensional
proofs as an exercise. In coordinates, tA is the map

tA(qi, pj) = (qi, pj +Aj). (6.6.3)

Thus,

t∗AΘ = t∗A(pidqi) = (pi +Ai)dqi = pidqi +Aidqi, (6.6.4)

which is the coordinate expression for Θ + π∗QA. The remaining assertions
follow directly from this. ¥
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In particular, fiber translation by the differential of a function A = df is
a canonical transformation; in fact, f induces, in the sense of the preceding
section, a generating function (see Exercise 6.6-2). The two basic classes of
canonical transformations, lifts, and fiber translations, play an important
part in mechanics.

Magnetic Terms. A symplectic form on T ∗Q, different from the canon-
ical one, is obtained in the following way. Let B be a closed two-form on
Q. Then Ω − π∗QB is a closed two-form on T ∗Q, where Ω is the canonical
two-form. To see that Ω−π∗QB is (weakly) nondegenerate, use the fact that
in a local chart this form is given at the point (w,α) by

((u, β), (v, γ)) 7→ 〈γ, u〉 − 〈β, v〉 −B(w)(u, v). (6.6.5)

Proposition 6.6.2.

(i) Let Ω be the canonical two-form on T ∗Q and let πQ : T ∗Q → Q be
the projection. If B is a closed two-form on Q, then

ΩB = Ω− π∗QB (6.6.6)

is a (weak) symplectic form on T ∗Q.

(ii) Let B and B′ be closed two-forms on Q and assume that B − B′ =
dA. Then the mapping tA (fiber translation by A) is a symplectic
diffeomorphism of (T ∗Q, Ω− π∗QB) with (T ∗Q, Ω− π∗QB′).

Proof. Part (i) follows from the momentum shifting lemma. For (ii), use
formula (6.6.2) to get

t∗AΩ = Ω− π∗QdA = Ω− π∗QB + π∗QB
′, (6.6.7)

so that

t∗A(Ω− π∗QB′) = Ω− π∗QB
since πQ ◦ tA = πQ. ¥

Symplectic forms of the type ΩB arise in the reduction process.2 In the
following section, we explain why the extra term π∗QB is called a magnetic
term .

Exercises

¦ Exercise 6.6-1. Provide the intrinsic proof of Proposition 6.6.1.

¦ Exercise 6.6-2. If A = df , use a coordinate calculation to check that
S(qi, ri) = riq

i − f(qi) is a generating function for tA.

2Magnetic terms come up in what is called the cotangent bundle reduction the-
orem; see Smale [1972], Abraham and Marsden [1978], Kummer [1981], Nill [1983],
Montgomery, Marsden, and Ratiu [1984], Gozzi and Thacker [1987], and Marsden [1992].
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172 6.7 A Particle in a Magnetic Field

6.7 A Particle in a Magnetic Field

Let B be a closed two-form on R3 and let B = Bxi + Byj + Bzk be the
associated divergence-free vector field, that is,

iB(dx ∧ dy ∧ dz) = B,

so that

B = Bx dy ∧ dz −By dx ∧ dz +Bz dx ∧ dy.

Thinking of B as a magnetic field, the equations of motion for a particle
with charge e and mass m are given by the Lorentz force law :

m
dv
dt

=
e

c
v ×B, (6.7.1)

where v = (ẋ, ẏ, ż). On R3 × R3, that is, (x,v)-space, consider the sym-
plectic form

ΩB = m(dx ∧ dẋ+ dy ∧ dẏ + dz ∧ dż)− e

c
B (6.7.2)

that is, (6.6.6). As Hamiltonian, take the kinetic energy:

H =
m

2
(ẋ2 + ẏ2 + ż2) (6.7.3)

writing XH(u, v, w) = (u, v, w, u̇, v̇, ẇ), the condition

dH = iXHΩB (6.7.4)

is

m(ẋ dẋ+ ẏ dẏ + ż dż) = m(u dẋ− u̇ dx+ v dẏ − v̇ dy
+ w dż − ẇ dz)− e

c
[Bxv dz −Bxw dy

−Byu dz +Byw dx+Bzu dy −Bzv dx],

which is equivalent to

u = ẋ, v = ẏ, w = ż,

mu̇ =
e

c
(Bzv −Byw),

mv̇ =
e

c
(Bxw −Bzu),

mẇ =
e

c
(Byu−Bxv),
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6.7 A Particle in a Magnetic Field 173

that is, to

mẍ =
e

c
(Bz ẏ −By ż),

mÿ =
e

c
(Bxż −Bzẋ),

mz̈ =
e

c
(Byẋ−Bxẏ),

 (6.7.5)

which is the same as (6.7.1). Thus the equations of motion for a particle in
a magnetic field are Hamiltonian, with energy equal to the kinetic energy
and with the symplectic form ΩB .

IfB = dA; that is, B = ∇×A, where A[ = A, then the map tA : (x,v) 7→
(x,p), where p = mv + eA/c pulls back the canonical form to ΩB by the
momentum shifting lemma. Thus, equations (6.7.1) are also Hamiltonian
relative to the canonical bracket on (x,p)-space with the Hamiltonian

HA =
1

2m
‖p− e

c
A‖2. (6.7.6)

Remarks.

1. Not every magnetic field can be written as B = ∇ ×A on Euclidean
space. For example, the field of a magnetic monopole of strength
g 6= 0, namely

B(r) = g
r
‖r‖3 , (6.7.7)

cannot be written this way since the flux of B through the unit sphere is
4πg, yet Stokes’ theorem applied to the two-sphere would give zero; see
Exercise 4.4-3. Thus, one might think that the Hamiltonian formulation
involving only B (that is, using ΩB and H) is preferable. However, there is
a way to recover the magnetic potential A by regarding it as a connection
on a nontrivial bundle over R3 \ {0}. (This bundle over the sphere S2 is
the Hopf fibration S3 → S2.) This same construction can be carried out
using reduction and we shall do so later. For a readable account of some
aspects of this situation, see Yang [1985].

2. When one studies the motion of a particle in a Yang–Mills field, one
finds a beautiful generalization of this construction and related ideas using
the theory of principal bundles; see Sternberg [1977], Weinstein [1978], and
Montgomery [1984].

3. In Chapter 8 we study centrifugal and Coriolis forces and will see some
structures analogous to those here. ¨
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Exercises

¦ Exercise 6.7-1. Show that particles in constant magnetic fields move in
helixes.

¦ Exercise 6.7-2. Verify “by hand” that 1
2m‖v‖2 is conserved for a parti-

cle moving in a magnetic field.

6.8 Linearization of Hamiltonian Systems

This optional section may be downloaded from the world wide web at:
http://www.cds.caltech.edu/~marsden
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