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An Introduction to Lie Groups

To prepare for the next chapters, we present some basic facts about Lie
groups. Alternative expositions and additional details can be obtained from
Abraham and Marsden [1978], Olver [1986], and Sattinger and Weaver
[1986]. In particular, in this book we shall require only elementary facts
about the general theory and a knowledge of a few of the more basic groups,
such as the rotation and Euclidean groups.

Here are how some of the basic groups arise in mechanics:

Linear and Angular Momentum. These arise as conserved quantities
associated with the groups of translations and rotations in space.

Rigid Body. Consider a free rigid body rotating about a its center of
mass, taken to be the origin. “Free” means that there are no external forces,
and “rigid” means that the distance between any two points of the body
is unchanged during the motion. Consider a point X of the body at time
t = 0, and denote its position at time t by f(X, t). Rigidity of the body
and the assumption of a smooth motion imply that f(X, t) = A(t)X, where
A(t) is a proper rotation, that is, A(t) ∈ SO(3), the proper rotation group
of R3, the 3 × 3 orthogonal matrices with determinant 1. The set SO(3)
will be shown to be a three-dimensional Lie group and, since it describes
any possible position of the body, it serves as the configuration space. The
group SO(3) also plays a dual role of a symmetry group since the same
physical motion is described if we rotate our coordinate axes. Used as a
symmetry group, SO(3) leads to conservation of angular momentum.
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Heavy Top. Consider a rigid body moving with a fixed point but under
the influence of gravity. This problem still has a configuration space SO(3),
but the symmetry group is only the circle group S1, consisting of rotations
about the direction of gravity. One says that gravity has broken the sym-
metry from SO(3) to S1. This time, “eliminating” the S1 symmetry “mys-
teriously” leads one to the larger Euclidean group SE(3) of rigid motion
of R3. This is a manifestation of the general theory of semidirect products
(see the Introduction, where we showed that the heavy top equations are
Lie–Poisson for SE(3), and Marsden, Ratiu, and Weinstein [1984a,b]).

Incompressible Fluid. Let Ω be a region in R3 that is filled with a mov-
ing incompressible fluid, and is free of external forces. Denote by η(X, t) the
trajectory of a fluid particle which at time t = 0 is at X ∈ Ω. For fixed t the
map ηt defined by ηt(X) = η(X, t) is a diffeomorphism of Ω. In fact, since
the fluid is incompressible, we have ηt ∈ Diffvol(Ω), the group of volume-
preserving diffeomorphisms of Ω. Thus, the configuration space for the
problem is the infinite-dimensional Lie group Diffvol(Ω). Using Diffvol(Ω)
as a symmetry group leads to Kelvin’s circulation theorem as a conservation
law. See Marsden and Weinstein [1983].

Compressible Fluids. In this case the configuration space is the whole
diffeomorphism group Diff(Ω). The symmetry group consists of density-
preserving diffeomorphisms Diffρ(Ω). The density plays a role similar to
that of gravity in the heavy top and again leads to semidirect products, as
does the next example.

Magnetohydrodynamics (MHD). This example is that of a com-
pressible fluid consisting of charged particles with the dominant electro-
magnetic force being the magnetic field produced by the particles them-
selves (possibly together with an external field). The configuration space
remains Diff(Ω) but the fluid motion is coupled with the magnetic field
(regarded as a two-form on Ω).

Maxwell-Vlasov Equation. Let f(x,v, t) denote the density function
of a collisionless plasma. The function f evolves in time by means of a
time-dependent canonical transformation on R6, that is, (x,v)-space. In
other words, the evolution of f can be described by ft = η∗t f0 where f0 is
the initial value of f , ft its value at time t, and ηt is a canonical transfor-
mation. Thus, Diffcan(R6), the group of canonical transformations plays an
important role.

Maxwell’s Equations Maxwell’s equations for electrodynamics are in-
variant under gauge transformations that transform the magnetic (or 4)
potential by A 7→ A+∇ϕ. This gauge group is an infinite-dimensional Lie
group. The conserved quantity associated with the gauge symmetry in this
case is the charge.
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9.1 Basic Definitions and Properties

Definition 9.1.1. A Lie group is a (Banach) manifold G that has
a group structure consistent with its manifold structure in the sense that
group multiplication

µ : G×G→ G; (g, h) 7→ gh

is a C∞ map.

The maps Lg : G → G; h 7→ gh, and Rh : G → G; g 7→ gh are called
the left and right translation maps. Note that

Lg1 ◦ Lg2 = Lg1g2 and Rh1 ◦Rh2 = Rh2h1 .

If e ∈ G denotes the identity element, then Le = Id = Re and so

(Lg)−1 = Lg−1 and (Rh)−1 = Rh−1 .

Thus, Lg and Rh are diffeomorphisms for each g and h. Notice that

Lg ◦Rh = Rh ◦ Lg,

that is, left and right translation commute. By the chain rule,

TghLg−1 ◦ ThLg = Th(Lg−1 ◦ Lg) = Id .

Thus, ThLg is invertible. Likewise, TgRh is an isomorphism.
We now show that the inversion map I : G → G; g 7→ g−1 is C∞.

Indeed, consider solving
µ(g, h) = e

for h as a function of g. The partial derivative with respect to h is just ThLg,
which is an isomorphism. Thus, the solution g−1 is a smooth function of g
by the implicit function theorem.

Lie groups can be finite- or infinite-dimensional. For a first reading of
this section, the reader may wish to assume G is finite dimensional.1

Examples

(a) Any Banach space V is an abelian Lie group with group operations

µ : V × V → V, µ(x, y) = x + y, and I : V → V, I(x) = −x.

The identity is just the zero vector. We call such a Lie group a vector
group. ¨

1We caution that some interesting infinite-dimensional groups (such as groups of
diffeomorphisms) are not Banach–Lie groups in the (naive) sense just given.
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(b) The group of linear isomorphisms of Rn to Rn is a Lie group of
dimension n2, called the general linear group and denoted GL(n,R).
It is a smooth manifold, since it is an open subset of the vector space
L(Rn,Rn) of all linear maps of Rn to Rn. Indeed, GL(n,R) is the inverse
image of R\{0} under the continuous map A 7→ det A of L(Rn,Rn) to R.
For A, B ∈ GL(n,R), the group operation is composition

µ : GL(n,R)×GL(n,R)→ GL(n,R)

given by
(A, B) 7→ A ◦B,

and the inversion map is

I : GL(n,R)→ GL(n,R),

defined by
I(A) = A−1.

Group multiplication is the restriction of the continuous bilinear map

(A, B) ∈ L(Rn,Rn)× L(Rn,Rn) 7→ A ◦B ∈ L(Rn,Rn).

Thus, µ is C∞ and so GL(n,R) is a Lie group.
The group identity element e is the identity map on Rn. If we choose a

basis in Rn, we can represent each A ∈ GL(n,R) by an invertible (n× n)-
matrix. The group operation is then matrix multiplication µ(A, B) = AB
and I(A) = A−1 is matrix inversion. The identity element e is the n ×
n identity matrix. The group operations are obviously smooth since the
formulas for the product and inverse of matrices are smooth (rational)
functions of the matrix components. ¨

(c) In the same way, one sees that for a Banach space V,GL(V, V ), the
group of invertible elements of L(V, V ) is a Banach Lie group. For the proof
that this is open in L(V, V ), see Abraham, Marsden, and Ratiu [1988].
Further examples are given in the next section. ¨

Charts. Given any local chart on G, one can construct an entire atlas on
the Lie group G by use of left (or right) translations. Suppose, for example,
that (U, ϕ) is a chart about e ∈ G, and that ϕ : U → V . Define a chart
(Ug, ϕg) about g ∈ G by letting

Ug = Lg(U) = {Lgh | h ∈ U}

and defining
ϕg = ϕ ◦ Lg−1 : Ug → V, h 7→ ϕ(g−1h).

The set of charts {(Ug, ϕg)} forms an atlas provided one can show that the
transition maps

ϕg1 ◦ ϕ−1
g2

= ϕ ◦ Lg−1
1 g2

◦ ϕ−1 : ϕg2(Ug1 ∩ Ug2)→ ϕg1(Ug1 ∩ Ug2)
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are differentiable. But this follows from the smoothness of group multipli-
cation and inversion.

Invariant Vector Fields. A vector field X on G is called left invariant
if for every g ∈ G, L∗gX = X, that is, if

(ThLg)X(h) = X(gh)

for every h ∈ G. We have the commutative diagram in Figure 9.1.1 and
illustrate the geometry in Figure 9.1.2.

TG TG

G G

TLg

Lg

X X

-

-

6 6

Figure 9.1.1. The commutative diagram for a left invariant vector field.

h gh
X(h)

X(gh)ThLg

Figure 9.1.2. A left invariant vector field.

Let XL(G) denote the set of left invariant vector fields on G. If g ∈ G,
and X, Y ∈ XL(G) then

L∗g[X, Y ] = [L∗gX, L∗gY ] = [X, Y ],

so [X, Y ] ∈ XL(G). Therefore, XL(G) is a Lie subalgebra of X(G), the set
of all vector fields on G.

For each ξ ∈ TeG, we define a vector field Xξ on G by letting

Xξ(g) = TeLg(ξ).

. . . . . . . . . . . . . . . . . . . . . . . . . . 2 March 1998—17h27 . . . . . . . . . . . . . . . . . . . . . . . . . .
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Then

Xξ(gh) = TeLgh(ξ) = Te(Lg ◦ Lh)(ξ)
= ThLg(TeLh(ξ)) = ThLg(Xξ(h)),

which shows that Xξ is left invariant. The linear maps

ζ1 : XL(G)→ TeG, X 7→ X(e)

and

ζ2 : TeG→ XL(G), ξ 7→ Xξ

satisfy ζ1 ◦ ζ2 = idTeG and ζ2 ◦ ζ1 = idXL(G). Therefore, XL(G) and TeG
are isomorphic as vector spaces.

The Lie Algebra of a Lie Group. Define the Lie bracket in TeG by

[ξ, η] := [Xξ, Xη](e),

where ξ, η ∈ TeG and where [Xξ, Xη] is the Jacobi–Lie bracket of vector
fields. This clearly makes TeG into a Lie algebra. (Lie algebras were defined
in the Introduction.) We say that this defines a bracket in TeG via left-
extension. Note that by construction,

[Xξ, Xη] = X[ξ,η],

for all ξ, η ∈ TeG.

Definition 9.1.2. The vector space TeG with this Lie algebra structure
is called the Lie algebra of G and is denoted by g.

Defining the set XR(G) of right invariant vector fields on G in the
analogous way, we get a vector space isomorphism ξ 7→ Yξ, where Yξ(g) =
(TeRg)(ξ), between TeG = g and XR(G). In this way, each ξ ∈ g defines an
element Yξ ∈ XR(G), and also an element Xξ ∈ XL(G). We will prove that
a relation between Xξ and Yξ is given by

I∗Xξ = −Yξ (9.1.1)

where I : G → G is the inversion map: I(g) = g−1. Since I is a dif-
feomorphism, (9.1.1) shows that I∗ : XL(G) → XR(G) is a vector space
isomorphism. To prove (9.1.1) notice first that for u ∈ TgG and v ∈ ThG,
the derivative of the multiplication map has the expression

T(g,h)µ(u, v) = ThLg(v) + TgRh(u). (9.1.2)

In addition, differentiating the map g 7→ µ(g, I(g)) = e gives

T(g,g−1)µ(u, TgI(u)) = 0,
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for all u ∈ TgG. This and (9.1.2) yields

TgI(u) = −(TeRg−1 ◦ TgLg−1)(u), (9.1.3)

for all u ∈ TgG. Consequently, if ξ ∈ g, and g ∈ G, we have

(I∗Xξ)(g) = (TI ◦Xξ ◦ I−1)(g) = Tg−1I(Xξ(g−1))

= −(TeRg ◦ Tg−1Lg)(Xξ(g−1)) (by (9.1.3))

= −TeRg(ξ) = −Yξ(g) (since Xξ(g−1) = TeLg−1(ξ))

and (9.1.1) is proved. Hence for ξ, η ∈ g,

−Y[ξ,η] = I∗X[ξ,η] = I∗[Xξ, Xη] = [I∗Xξ, I∗Xη]
= [−Yξ,−Yη] = [Yξ, Yη],

so that
−[Yξ, Yη](e) = Y[ξ,η](e) = [ξ, η] = [Xξ, Xη](e).

Therefore, the Lie algebra bracket [ , ]R in g defined by right extension
of elements in g:

[ξ, η]R := [Yξ, Yη](e)

is the negative of the one defined by left extension, that is,

[ξ, η]R := −[ξ, η].

Examples

(a) For a vector group V , TeV ∼= V ; it is easy to see that the left invariant
vector field defined by u ∈ TeV is the constant vector field: Xu(v) = u, for
all v ∈ V . Therefore, the Lie algebra of a vector group V is V itself, with
the trivial bracket [v, w] = 0, for all v, w ∈ V . We say that the Lie algebra
is abelian in this case. ¨

(b) The Lie algebra of GL(n,R) is L(Rn,Rn), the vector space of all
linear transformations of Rn, with the commutator bracket

[A, B] = AB −BA.

To see this, we recall that GL(n,R) is open in L(Rn,Rn) and so the Lie
algebra as a vector space is L(Rn,Rn). To compute the bracket, note that
for any ξ ∈ L(Rn,Rn),

Xξ : GL(n,R)→ L(Rn,Rn)

given by A 7→ Aξ, is a left invariant vector field on GL(n,R), because for
every B ∈ GL(n,R), the map

LB : GL(n,R)→ GL(n,R)
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defined by LB(A) = BA is a linear mapping, and hence

Xξ(LBA) = BAξ = TALBXξ(A).

Therefore, by the local formula

[X, Y ](x) = DY (x) ·X(x)−DX(x) · Y (x),

we get

[ξ, η] = [Xξ, Xη](I) = DXη(I) ·Xξ(I)−DXξ(I) ·Xη(I).

But Xη(A) = Aη is linear in A, so DXη(I) ·B = Bη. Hence

DXη(I) ·Xξ(I) = ξη,

and similarly
DXξ(I) ·Xη(I) = ηξ.

Thus, L(Rn,Rn) has the bracket

[ξ, η] = ξη − ηξ. (9.1.4)

¨

(c) We can also establish (9.1.4) by a coordinate calculation. Choosing
a basis on Rn, each A ∈ GL(n,R) is specified by its components Ai

j such
that (Av)i = Ai

jv
j (sum on j ). Thus, a vector field X on GL(n,R) has

the form X(A) =
∑

i,j Ci
j(A)(∂/∂Ai

j). It is checked to be left invariant
provided there is a matrix (ξi

j) such that for all A,

X(A) =
∑
i,j

Ai
kξk

j

∂

∂Ai
j

.

If Y (A) =
∑

i,j Ai
kηk

j (∂/∂Ai
j) is another left invariant vector field, we have

(XY )[f ] =
∑

Ai
kξk

j

∂

∂Ai
j

[∑
Al

mηm
p

∂f

∂Al
p

]
=
∑

Ai
kξk

j δl
iδ

j
mηm

p

∂f

∂Al
p

+ (second derivatives)

=
∑

Ai
kξk

j ηj
m

∂f

∂Ai
j

+ (second derivatives),

where we used ∂As
m/∂Ak

j = δk
s δj

m. Therefore, the bracket is the left invari-
ant vector field [X, Y ] given by

[X, Y ][f ] = (XY − Y X)[f ] =
∑

Ai
k(ξk

j ηj
m − ηk

j ξj
m)

∂f

∂Ai
m

.

This shows that the vector field bracket is the usual commutator bracket
of (n× n)-matrices, as before. ¨
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One-parameter Subgroups and the Exponential Map. If Xξ is the
left invariant vector field corresponding to ξ ∈ g, there is a unique integral
curve γξ : R→ G of Xξ starting at e; γξ(0) = e and γ′ξ(t) = Xξ(γξ(t)). We
claim that

γξ(s + t) = γξ(s)γξ(t),

which means that γξ(t) is a smooth one-parameter subgroup. Indeed,
as functions of t, both sides equal γξ(s) at t = 0 and both satisfy the
differential equation σ′(t) = Xξ(σ(t)) by left invariance of Xξ, so they are
equal. Left invariance or γξ(t + s) = γξ(t)γξ(s) also shows that γξ(t) is
defined for all t ∈ R.

Definition 9.1.3. The exponential map exp : g→ G is defined by

exp(ξ) = γξ(1).

We claim that
exp(sξ) = γξ(s).

Indeed, for fixed s ∈ R, the curve t 7→ γξ(ts) which at t = 0 passes through
e, satisfies the differential equation

d

dt
γξ(ts) = sXξ(γξ(ts)) = Xsξ(γξ(ts)).

Since γsξ(t) satisfies the same differential equation and passes through e at
t = 0, it follows that γsξ(t) = γξ(ts). Putting t = 1 yields exp(sξ) = γξ(s).

Hence the exponential mapping maps the line sξ in g onto the one-
parameter subgroup γξ(s) of G, which is tangent to ξ at e. It follows from
left invariance that the flow F ξ

t of Xξ satisfies F ξ
t (g) = gF ξ

t (e) = gγξ(t), so

F ξ
t (g) = g exp(tξ) = Rexp tξg.

Let γ(t) be a smooth one-parameter subgroup of G, so γ(0) = e in partic-
ular. We claim that γ = γξ, where ξ = γ′(0). Indeed, taking the derivative
at s = 0 in the relation γ(t + s) = γ(t)γ(s) gives

dγ(t)
dt

=
d

ds

∣∣∣∣
s=0

Lγ(t)γ(s) = TeLγ(t)γ
′(0) = Xξ(γ(t)),

so that γ = γξ since both equal e at t = 0. In other words, all smooth
one-parameter subgroups of G are of the form exp tξ for some ξ ∈ g. Since
everything proved above for Xξ can be repeated for Yξ, it follows that the
exponential map is the same for the left and right Lie algebras of a Lie
group.

From smoothness of the group operations and smoothness of the solutions
of differential equations with respect to initial conditions, it follows that
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exp is a C∞ map. Differentiating the identity exp(sξ) = γξ(s) in s at
s = 0 shows that T0 exp = idg. Therefore, by the inverse function theorem,
exp is a local diffeomorphism from a neighborhood of zero in g onto a
neighborhood of e in G. In other words, the exponential map defines a
local chart for G at e; in finite dimensions, the coordinates associated to
this chart are called the canonical coordinates of G. By left translation,
this chart provides an atlas of all G. (For typical infinite-dimensional groups
like diffeomorphism groups, exp is not locally onto. It is not true that the
exponential map is a local diffeomorphism at any ξ 6= 0, even for finite-
dimensional Lie groups.)

It turns out that the exponential map characterizes not only the smooth
one-parameter subgroups of G, but the continuous ones as well, as given in
the next Proposition. The proof may be found in the internet supplements
to this chapter.

Proposition 9.1.4. Let r : R → G be a continuous one-parameter sub-
group of G, then r is automaticlaly smooth and hence r(t) = exp tξ, for
some ξ ∈ S.

Examples

(a) Let G = V be a vector group, that is, V is a vector space and the
group operation is vector addition. Then g = V and exp : V → V is the
identity mapping. ¨

(b) Let G = GL(n,R); so g = L(Rn,Rn). For every A ∈ L(Rn,Rn), the
mapping γA : R→ GL(n,R) defined by

t 7→
∞∑

i=0

ti

i!
Ai

is a one-parameter subgroup, because γA(0) = I and

γ′A(t) =
∞∑

i=0

ti−1

(i− 1)!
Ai = γA(t)A.

Therefore, the exponential mapping is given by

exp : L(Rn,Rn)→ GL(n,Rn), A 7→ γA(1) =
∞∑

i=0

Ai

i!
.

As is customary, we will write

eA =
∞∑

i=0

Ai

i!
.

We sometimes write expG : g → G when there is more than one group
involved. ¨
. . . . . . . . . . . . . . . . . . . . . . . . . . 2 March 1998—17h27 . . . . . . . . . . . . . . . . . . . . . . . . . .



9.1 Basic Definitions and Properties 267

(c) Let G1 and G2 be Lie groups with Lie algebras g1 and g2. Then
G1 ×G2 is a Lie group with Lie algebra g1 × g2, and the exponential map
is given by

exp : g1 × g2 → G1 ×G2; (ξ2, ξ2) 7→ (exp1(ξ1), exp2(ξ2)).

¨

Computing Brackets. Here is a computationally useful formula for the
bracket. One follows these three steps:

1. Calculate the inner automorphisms

Ig : G→ G, where Ig(h) = ghg−1.

2. Differentiate Ig(h) with respect to h at h = e to produce the adjoint
operators

Adg : g→ g; Adg ·η = TeIg · η.

Note that (see Figure 9.1.3);

Adg η = Tg−1Lg · TeRg−1 · η.

3. Differentiate Adg η with respect to g at e in the direction ξ to get
[ξ, η], that is,

Teϕ
η · ξ = [ξ, η], (9.1.5)

where ϕη(g) = Adg η.

Adg

TeLg

e

g

TgRg
–1

Figure 9.1.3. The adjoint mapping is the linearization of conjugation.

Proposition 9.1.5. Formula (9.1.5) is valid.
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Proof. Denote by ϕt(g) = g exp tξ = Rexp tξ g, the flow of Xξ. Then

[ξ, η] = [Xξ, Xη](e) =
d

dt
Tϕt(e)ϕ

−1
t ·Xη(ϕt(e))

∣∣∣∣
t=0

=
d

dt
Texp tξ Rexp(−tξ) Xη(exp tξ)

∣∣∣∣
t=0

=
d

dt
Texp tξ Rexp(−tξ) TeLexp tξ η

∣∣∣∣
t=0

=
d

dt
Te(Lexp tξ ◦Rexp(−tξ))η

∣∣∣∣
t=0

=
d

dt
Adexp tξ η

∣∣∣∣
t=0

,

which is (9.1.5). ¥

Another way of expressing (9.1.5) is

[ξ, η] =
d

dt

d

ds
g(t)h(s)g(t)−1

∣∣∣∣
s=0,t=0

, (9.1.6)

where g(t) and h(s) are curves in G with g(0) = e, h(0) = e, and where
g′(0) = ξ and h′(0) = η.

Example Consider the group GL(n,R). Formula (9.1.4) also follows from
(9.1.5). Here, IAB = ABA−1 and so

AdA ·η = AηA−1.

Differentiating this with respect to A at A = Identity in the direction ξ
gives

[ξ, η] = ξη − ηξ. ¨

Group Homomorphisms. Some simple facts about Lie group homo-
morphisms will prove useful.

Proposition 9.1.6. Let G and H be Lie groups with Lie algebras g and
h. Let f : G → H be a smooth homomorphism of Lie groups, that is,
f(gh) = f(g)f(h), for all g, h ∈ G. Then Tef : g → h is a Lie algebra
homomorphism, that is, (Tef)[ξ, η] = [Tef(ξ), Tef(η)], for all ξ, η ∈ g. In
addition,

f ◦ expG = expH ◦Tef.

. . . . . . . . . . . . . . . . . . . . . . . . . . 2 March 1998—17h27 . . . . . . . . . . . . . . . . . . . . . . . . . .



9.1 Basic Definitions and Properties 269

Proof. Since f is a group homomorphism, f ◦ Lg = Lf(g) ◦ f . Thus,
Tf ◦ TLg = TLf(g) ◦ Tf from which it follows that

XTef(ξ)(f(g)) = Tgf(Xξ(g)),

that is, that Xξ and XTef(ξ) are f -related . It follows that the vector fields
[Xξ, Xη] and [XTef(ξ), XTef(η)] are also f -related for all ξ, η ∈ g (see Abra-
ham, Marsden, and Ratiu [1986], §4.2). Hence

Tef([ξ, η]) = (Tf ◦ [Xξ, Xη])(e) (where e = eG)
= [XTef(ξ), XTef(η)](ē) (where ē = eH = f(e))
= [Tef(ξ), Tef(η)].

Thus, Tef is a Lie algebra homomorphism.
Fixing ξ ∈ g, note that α : t 7→ f(expG(tξ)) and β : t 7→ expH(tTef(ξ))

are one-parameter subgroups of H. Moreover, α′(0) = Tef(ξ) = β′(0), and
so α = β. In particular, f(expG(ξ)) = expH(Tef(ξ)), for all ξ ∈ g. ¥

Example Proposition 9.1.5 applied to the determinant map gives the
identity det(expA) = exp(traceA) for A ∈ GL(n,R). ¨

Corollary 9.1.7. Assume that f1, f2 : G → H are homomorphisms of
Lie groups and that G is connected. If Tef1 = Tef2, then f1 = f2.

This follows from Proposition 9.1.5 since a connected Lie group G is
generated by a neighborhood of the identity element. This latter fact may
be proved following these steps:

1. Show that any open subgroup of a Lie group is closed (since its com-
plement is a union of sets homeomorphic to it).

2. Show that a subgroup of a Lie group is open if and only if it contains
a neighborhood of the identity element.

3. Conclude that a Lie group is connected if and only if it is generated
by arbitrarily small neighborhoods of the identity element.

From Proposition 9.1.5 and the fact that the inner automorphisms are
group homomorphisms, we get

Corollary 9.1.8.

(i) exp(Adg ξ) = g(exp ξ)g−1, for every ξ ∈ g and g ∈ G; and

(ii) Adg[ξ, η] = [Adg ξ,Adg η].
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More Automatic Smoothness Results. There are some interesting
results related in spirit to Proposition 9.1.4 and the preceding discussions.
The proofs may be found on the internet supplement.

Proposition 9.1.9. (i) A lie group homomorphism f : G → H is in-
jective if and only if Tf : TG→ TH is an injective map

(ii) If a Lie group homomorphism f : G→ H is bijective then it is a Lie
group isomorphism.

More striking is the following.

Theorem 9.1.10. Any continuous homomorphism of finite dimensional
Lie groups is smooth.

There is a remarkable consequence to this theorem. If G is a topologi-
cal group (i.e., the multiplication and inversion maps are continuous) one
could, in principle, have more than one differentiable manifold structure
making G into two non-isomorphic Lie groups ( i.e., the manifold struc-
tures are not diffeomorphic) but both inducing the same topological struc-
ture. This phenomenon of “exotic structures” occurs for general manifolds.
However, in view of the theorem above, this cannot happen in the case of
Lie groups. Indeed, since the identity map is a homeomorphism, it must
be a diffeomorphism. Thus, a toplological gorup that is locally Euclidean,
(that is, there is an open neighborhood of the identity homeomorphic to an
open ball in Rn) admits at most one smooth manifold structure relative to
which it is a Lie group.

The existence part of this statement is Hilbert’s famous fifth problem:
show that a locally Euclidean topological group admits a smooth (actually
analytic) structure making it into a Lie group. The solution of this problem
was achieved by Gleason and, independently, by Montgomery and Zippin
in 1952; see Kaplansky [1971] for an excellent account of this proof.

Abelian Lie Groups. Since any two elements of an Abelian Lie group
G commute, it follows that all adjoing operators Adg, g ∈ G equal the
identity. Therefore, by equation (9.1.5), The Lie algebra S is Abelian; that
is, [ξ, η] = 0 for all ξ, η ∈ S.

Examples

(a) Any finite dimensional vector space, throught of as an Abelian group
under addition, is an Abelian Lie group. The same is true in infite dimen-
sions for any Banach space. The exponential map is the identity. ¨

(b) The unit circle in the complex plane S1 = {z ∈ C | |z| = 1} is
an abelian Lie group under multiplication. The tangent space TeS

1 is the
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imaginary axis and we identify R with TeS
1 by t 7→ 2πit. With this iden-

tification, the exponential map exp : R → S1 is given by exp(t) = e2πit.
Note that exp−1(1) = Z. ¨

(c) The n-dimensional torus Tn = S1×· · ·×S1 ( n times ) is an Abelian
Lie group. The exponential map exp : Rn → Tn is given by

exp(t1, . . . , tn) = (e2πit1 , . . . , e2πitn).

Since S1 = R/Z , it follows that

Tn = R/Zn,

the projection Rn → Tn being given by exp above. ¨

If G is a connected Lie group whose Lie algebra S is Abelian, the Lie
group homomorphism g ∈ G 7→ Adg ∈ GL(S) has induced Lie algebra
homomorphism ξ ∈ S 7→ adξ ∈ gl(S) the constant map equal to zero.
Therefore, by Corollary 9.1.7, Adg = identity on G, for any g ∈ G. Apply
Corollary 9.1.7 again, this time to the conjugation by g on G (whose
induced Lie algebra homomorphism is operatornameAdg), to conclude that
it equals the identity map on G. Thus, g commutes with all elements of G;
since g was arbitray we conclude that G is Abelian. We summarize these
observations in the following proposition.

Proposition 9.1.11. If G is an Abelian Lie group. its Liea algebra S is
also Abelian. Conversely, if S is connected, then G is Abelian.

The main structure theorem for Abelian Lie groups (whose proof may
be found on the internet supplement) is the following.

Theorem 9.1.12. Every connected Abelian n-dimensional Lie group G
is isomorphic to a cylinder, that is, to Tk × Rn−k for some k = 1, . . . , n.

Lie Subgroups. It is natural to synthesize the subgroup and submani-
fold concepts.

Definition 9.1.13. A Lie subgroup H of a Lie group G is a subgroup
of G which is also an injectively immersed submanifold of G. If H is a
submanifold of G, then H is called a regular Lie subgroup.

For example, the one-parameter subgroups of the torus T2 that wind
densely on the torus are Lie subgroups that are not regular.

The Lie algebras g and h of G and a Lie subgroup H, respectively, are
related in the following way:

Proposition 9.1.14. Let H be a Lie subgroup of G. Then h is a Lie
subalgebra of g. Moreover,

h = {ξ ∈ g | exp tξ ∈ H, for all t ∈ R}.
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Proof. The first statement is a consequence of Proposition 9.1.5, which
also shows that exp tξ ∈ H, for all ξ ∈ h and t ∈ R. Conversely, if exp tξ ∈
H, for all t ∈ R, we have, (

d

dt

)
exp tξ

∣∣∣∣
t=0

∈ h

since H is a Lie subgroup; but this equals ξ by definition of the exponential
map. ¥

Theorem 9.1.15. If H is a closed subgroup of a Lie group G, then H
is a regular Lie subgroup. Conversely, if H is a regular Lie subgroup of G
then H is closed.

The proof of this result may be found in the internet supplement.

We remind the reader that the Lie algebras appropriate to fluid dynamics
and plasma physics are infinite dimensional. Nevertheless, there is still, with
the appropriate technical conditions, a correspondence between Lie groups
and Lie algebras, analogous to the preceding theorems. The reader should
be warned, however, that these theorems as well as Proposition 9.1.9 do
not naively generalize to the infinite-dimensional situation and to prove
them for special cases, specialized analytical theorems may be required.

The next result, whose proof may be found in the internet supplement,
is sometimes called the “Lie’s third fundamental theorem.”

Theorem 9.1.16. Let G be a Lie group with Lie algebra g, and let h be
a lie subalgebra of g. Then there exists a unique connected Lie subgroup H
of G whose Lie algebra is h.

Quotients. If H is a closed subgroup of G, we denote by G/H, the set
of left cosets, that is, the collection {gH | g ∈ G}. Let π : G → G/H be
the projection g 7→ gH.

Theorem 9.1.17. There is a unique manifold structure on G/H such
that the projection π : G→ G/H is a smooth surjective submersion.

define
submersion?Again, we refer to the internet supplement for the proof.

The Maurer–Cartan Equations. We close this section with a proof
of the Maurer–Cartan structure equations on a Lie group G. Define
λ, ρ ∈ Ω1(G; g), the space of g-valued one-forms on G, by

λ(ug) = TgLg−1(ug), ρ(ug) = TgRg−1(ug).

Thus, λ and ρ are Lie algebra valued one-forms on G that are defined by
left and right translation to the identity respectively. Define the two-form
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[λ, λ] by

[λ, λ](u, v) = [λ(u), λ(v)],

and similarly for [ρ, ρ].

Theorem 9.1.18 (Maurer–Cartan Structure Equations).

dλ + [λ, λ] = 0, dρ− [ρ, ρ] = 0.

Proof. We use identity 6 from the table in §4.4. Let X, Y ∈ X(G) and
let, for fixed g ∈ G, ξ = TgLg−1(X(g)) and η = TgLg−1(Y (g)). Thus,

(dλ)(Xξ, Xη) = Xξ[λ(Xη)]−Xη[λ(Xξ)]− λ([Xξ, Xη]).

Since λ(Xη)(h) = ThLh−1(Xη(h)) = η is constant, the first term vanishes.
Similarly, the second term vanishes. The third term equals

λ([Xξ, Xη]) = λ(X[ξ,η]) = [ξ, η],

and hence
(dλ)(Xξ, Xη) = −[ξ, η].

Therefore,

(dλ + [λ, λ]) (Xξ, Xη)
= −[ξ, η] + [λ, λ](Xξ, Xη)
= −[ξ, η] + [λ(Xξ), λ(Xη)]
= −[ξ, η] + [ξ, η] = 0.

This proves that

(dλ + [λ, λ]) (X, Y )(g) = 0.

Since g ∈ G was arbitrary as well as X and Y , it follows that dλ+[λ, λ] = 0.
The second relation is proved in the same way but working with the right

invariant vector fields Yξ, Yη. The sign in front of the second term changes
since [Yξ, Yη] = Y−[ξ,η]. ¥

Remark. If α is a (0, k)-tensor with values in a Banach space E1, and β
is a (0, l)-tensor with values in a Banach space E2, and if B : E1 × E2 →
E3 is a bilinear map, then replacing multiplication in (4.2.1) by B, the
same formula defines an E3-valued (0, k + l)-tensor on M . Therefore, using
definitions (4.2.2)–(4.2.4) if

α ∈ Ωk(M, E1) and β ∈ Ωk(M, E2),
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then [
(k + l)!

k!l!
l!
]
A(α⊗ β) ∈ Ωk+l(M, E3).

We shall call this expression the wedge product associated to B and
denote it either by α ∧B β or B∧(α, β).

In particular, if E1 = E2 = E3 = g and B = [ , ] is the Lie algebra
bracket, then for α, β ∈ Ω1(M ; g), we have

[α, β]∧(u, v) = [α(u), β(v)]− [α(v), β(u)] = −[β, α]∧(u, v)

for any vectors u, v tangent to M . Thus, alternatively, one can write the
structure equations as

dλ + 1
2 [λ, λ]∧ = 0, dρ− 1

2 [ρ, ρ]∧ = 0. ¨

Haar measure. One can characterize Lebesgue measure up to a multi-
plicative constant on Rn by its invariance under translations. Similarly, on
a locally compact group there is a unique (up to a nonzero multiplicative
constant) left-invariant measure, called Haar measure . For Lie groups
the existence of such measures is especially simple.

Proposition 9.1.19. Let G be a Lie group. Then there is a volume form
µ, unique up to nonzero multiplicative constants, which is left invariant. If
G is compact, µ is right invariant as well.

Proof. Pick any n-form µe on TeG that is nonzero and define an n-form
on TgG by

µg(v1, . . . , vn) = µe · (TLg−1v1, . . . , TLg−1 · vn).

Then µg is left invariant and smooth. For n = dimG, µe is unique up to a
scalar factor, so µg is as well.

Fix g0 ∈ G and consider R∗g0
µ = cµ for a constant c. If G is compact,

this relationship may be integrated, and by the change of variables formula
we deduce that c = 1. Hence, µ is also right invariant. ¥

Exercises

¦ Exercise 9.1-1. Verify Adg[ξ, η] = [Adg ξ,Adg η] directly for GL(n).

¦ Exercise 9.1-2. Let G be a Lie group with group operations µ : G×G→
G and I : G → G. Show that the tangent bundle TG is also a Lie group,
called the tangent group of G with group operations Tµ : TG × TG 7→
TG, TI : TG→ TG.
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¦ Exercise 9.1-3 (Defining a Lie group by a chart at the identity).
Let G be a group and suppose that ϕ : U → V is a one-to-one map from
a subset U of G containing the identity element to an open subset V in
a Banach space (or Banach manifold). The following conditions are neces-
sary and sufficient for ϕ to be a chart in a Hausdorff–Banach–Lie group
structure on G:

(a) The set W = {(x, y) ∈ V × V | ϕ−1(y) ∈ U} is open in V × V and
the map (x, y) ∈W 7→ ϕ(ϕ−1(x)ϕ−1(y)) ∈ V is smooth.

(b) For every g ∈ G, the set Vg = ϕ(gUg−1 ∩ U) is open in V and the
map x ∈ Vg 7→ ϕ(gϕ−1(x)g−1) ∈ V is smooth.

¦ Exercise 9.1-4 (The Heisenberg group). Let (Z,Ω) be a symplectic
vector space and define on H := Z × S1 the following operation:

(u, exp iφ)(v, exp iψ) =
(
u + v, exp i[φ + ψ + }−1Ω(u, v)]

)
.

(a) Verify that this operation gives H the structure of a non-commutative
Lie group.

(b) Show that the Lie algebra of H is given by h = Z×R with the bracket
operation2

[(u, φ), (v, ψ)] = (0, 2}−1Ω(u, v)).

(c) Show that [h, [h, h]] = 0, that is, h is nilpotent , and that R lies in
the center of the algebra (i.e., [h,R] = 0); one says that h is a central
extension of Z.

9.2 Some Classical Lie Groups

We have already discussed the classical matrix Lie group GL(n,R). In this
section we will show that a number of classical matrix groups are Lie sub-
groups of GL(n,R).

The Special Linear Group SL(n,R). Let det : L(Rn,Rn)→ R be the
determinant map and observe that

GL(n,R) = {A ∈ L(Rn,Rn) | det A 6= 0},

so GL(n,R) is open in L(Rn,Rn). Notice that R\{0} is a group under
multiplication and that

det : GL(n,R)→ R\{0}

2This formula for the bracket, when applied to the space Z = R2n of the usual p’s
and q’s , shows that this algebra is the same as that encountered in elementary quan-
tum mechanics via the Heisenberg commutation relations. Hence the name “Heisenberg
group.”
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276 9.2 Some Classical Lie Groups

is a Lie group homomorphism because

det(AB) = (detA)(detB).

Lemma 9.2.1. The map det : GL(n,R)→ R\{0} is C∞ and its deriva-
tive is given by D detA ·B = (detA) trace(A−1B).

Proof. The smoothness of det is clear from its formula in terms of matrix
elements. Using the identity

det(A + λB) = (detA) det(I + λA−1B),

it suffices to prove
d

dλ
det(I + λC)

∣∣∣∣
λ=0

= trC.

This follows from the identity for the characteristic plynomial

det(I + λC) = 1 + λ trC + · · ·+ λn det C. ¥

Define the special linear group SL(n,R) by

SL(n,R) = {A ∈ GL(n,R) | det A = 1} = det−1(1). (9.2.1)

From Proposition 9.1.9 it follows that SL(n,R) is a closed Lie subgroup
of GL(n,R). However, this method invokes a rather subtle result to prove
something that is actually straightforward. In fact, it follows from Lemma
9.2.1 that det : GL(n,R) → R is a submersion, so SL(n,R) = det−1(1) is
a smooth closed submanifold and hence a closed Lie subgroup.

The tangent space to SL(n,R) at A ∈ SL(n,R) therefore consists of all
matrices B such that tr(A−1B) = 0. In particular, the tangent space at
the identity consists of the matrices with trace zero. We have seen that
the Lie algebra of GL(n,R) is L(Rn,Rn) with the Lie bracket given by
[A, B] = AB − BA. It follows that the Lie algebra sl(n,R) of SL(n,R)
consists of the set of n× n matrices having trace zero, with the bracket

[A, B] = AB −BA.

Since tr(B) = 0 imposes one condition on B, it follows that

dim[sl(n,R)] = n2 − 1.

We leave it to the reader to check that SL(n,R) is a noncompact, con- All
connectedness
assertions
need double
checking

nected Lie group, although GL(n,R) is not connected. The latter has two
connected components, one defined by det > 0 and the other by det < 0.
Summarizing:
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Proposition 9.2.2. The Lie group SL(n,R) is a noncompact connected
(n2 − 1)-dimensional Lie group whose Lie algebra consists of the (n × n)
matrices with trace zero (or linear maps of Rn to Rn with trace zero) with
the bracket

[A, B] = AB −BA.

The Orthogonal Group O(n). On Rn we use the standard inner prod-
uct

〈x,y〉 =
n∑

i=1

xiyi,

where x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn. Recall that a
linear map A ∈ L(Rn,Rn) is orthogonal if

〈Ax, Ay〉 = 〈x,y〉 , (9.2.2)

for all x,y ∈ R. In terms of the norm ‖x‖ = 〈x,x〉1/2, one sees from the
polarization identity that A is orthogonal iff ‖Ax‖ = ‖x‖, for all x ∈ Rn,
or in terms of the transpose AT , which is defined by 〈Ax,y〉 =

〈
x, AT y

〉
,

we see that A is orthogonal iff AAT = I.
Let O(n) denote the orthogonal elements of L(Rn,Rn). For A ∈ O(n),

we see that

1 = det(AAT ) = (detA)(detAT ) = (detA)2;

hence det A = ±1 and so A ∈ GL(n,R). Furthermore, if A, B ∈ O(n) then

〈ABx, ABy〉 = 〈Bx, By〉 = 〈x,y〉

and so AB ∈ O(n). Letting x′ = A−1x and y′ = A−1y, we see that

〈x,y〉 = 〈Ax′, Ay′〉 = 〈x′,y′〉 ,

that is,
〈x,y〉 =

〈
A−1x, A−1y

〉
;

hence A−1 ∈ O(n).
Let S(n) denote the vector space of symmetric linear maps of Rn to itself,

and let ψ : GL(n,R) → S(n) be defined by ψ(A) = AAT . We claim ψ is a
submersion. Indeed, its derivative is

Dψ(A) ·B = ABT + BAT

which is onto (to hit C, take B = CA/2). Thus, ψ−1(I) = O(n) is a
closed Lie subgroup of GL(n,R), called the orthogonal group. Since O(n)
is closed and bounded in L(Rn,Rn), it is compact. We shall see in §9.3
that O(n) is not connected, but has two connected components, one where
det = +1 and the other where det = −1.
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The Lie algebra o(n) of O(n) is kerDψ(I), namely, the skew-symmetric
linear maps with the usual bracket [A, B] = AB −BA. The space of skew-
symmetric n × n matrices have dimension equal to the number of entries
above the diagonal, namely, n(n− 1)/2. Thus,

dim[O(n)] = 1
2n(n− 1).

The special orthogonal group is defined as

SO(n) = O(n) ∩ SL(n,R),

that is,

SO(n) = {A ∈ O(n) | det A = +1}. (9.2.3)

Since SO(n) is the kernel of det : O(n) → {−1, 1}, that is, SO(n) =
det−1(1), it is an open and closed Lie subgroup of O(n), hence is compact.
We also note that SO(n) is the connected component of O(n) containing
the identity I, and so has the same Lie algebra as O(n). We summarize:

Proposition 9.2.3. The Lie group O(n) is a compact Lie group of di-
mension n(n − 1)/2. Its Lie algebra o(n) is the space of skew-symmetric
n× n matrices with bracket [A, B] = AB −BA. The connected component
of the identity in O(n) is the compact Lie group SO(n) which has the same
Lie algebra so(n) = o(n).

Rotations in the Plane SO(2). We parametrize

S1 = {x ∈ R2 | ‖x‖ = 1}

by the polar angle θ, 0 ≤ θ < 2π. For each θ ∈ [0, 2π], let

Aθ =
[

cos θ − sin θ
sin θ cos θ

]
,

using the standard basis of R2. Then Aθ ∈ SO(2) and represents a counter-
clockwise rotation through the angle θ. Conversely, if

A =
[

a1 a2

a3 a4

]
is orthogonal, the relations

a2
1 + a2

2 = 1, a2
3 + a2

4 = 1,

a1a3 + a2a4 = 0,

det A = a1a4 − a2a3 = 1

show that A = Aθ for some θ. Thus, SO(2) can be identified with S1; that
is, with rotations in the plane.
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Rotations in Space SO(3). The Lie algebra so(3) of SO(3) may be
identified with R3 as follows. We define the vector space isomorphism ˆ :
R3 → so(3) called the hat map, by

v = (v1, v2, v3) 7→ v̂ =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 . (9.2.4)

Note that
v̂ ·w = v ×w

and therefore that

(ûv̂ − v̂û)w = û(v ×w)− v̂(u×w)
= u× (v ×w)− v × (u×w)
= (u× v)×w = (u× v)ˆ ·w.

Thus, if we put the cross product on R3, ˆ becomes a Lie algebra isomor-
phism and so we can identify so(3) with R3 with the cross product as Lie
bracket.

We also note that the standard dot product may be written

v ·w = 1
2 trace

(
v̂T ŵ

)
= −1

2 trace (v̂ŵ) .

Theorem 9.2.4 (Euler’s Theorem). Every element A ∈ SO(3) is a
rotation through an angle θ about an axis w.

To prove this, we use the following lemma:

Lemma 9.2.5. Every A ∈ SO(3) has an eigenvalue equal to 1.

Proof. The eigenvalues of A are given by roots of the third degree poly-
nomial det(A− λI) = 0. Roots occur in conjugate pairs, so at least one is
real. If λ is a real root and x is a nonzero real eigenvector, Ax = λx, so

‖Ax‖2 = ‖x‖2 and ‖Ax‖2 = |λ|2 ‖x‖2

imply λ = ±1. If all three roots are real, they are (1, 1, 1) or (1,−1,−1)
since det A = 1. If there is one real and two complex conjugate roots, they
are (1, ω, ω̄) since det A = 1. In any case one real root must be +1. ¥

Proof of Theorem 9.2.4. By Lemma 9.2.5, the matrix A has an eigen-
vector w with eigenvalue 1, say Aw = w. The line spanned by w is also
invariant under A. Let P be the plane perpendicular to w; that is,

P = {y | 〈w,y〉 = 0} .
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Since A is orthogonal, A(P ) = P . Let e1, e2 be an orthogonal basis in P .
Then relative to (w, e1, e2), A has the matrix

A =

 1 0 0
0 a1 a2

0 a3 a4

 .

Since [
a1 a2

a3 a4

]
lies in SO(2), A is a rotation about the axis w by some angle. ¥

Corollary 9.2.6. Any A ∈ SO(3) can be written in some orthonormal
basis as the matrix

A =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 .

The infinitessimal version of Euler’s theorem is the following:

Proposition 9.2.7. Identifying the Lie algebra so(3) of SO(3) with the
Lie algebra R3, exp(tw) is a rotation about w by the angle t‖w‖, where
w ∈ R3.

Proof. To simplify the computation, we pick an orthonormal basis (e1, e2,
e3) of R3, with e1 = w/‖w‖. Relative to this basis, ŵ has the matrix

ŵ = ‖w‖

 0 0 0
0 0 −1
0 1 0

 .

Let

c(t) =

 1 0 0
0 cos t‖w‖ − sin t‖w‖
0 sin t‖w‖ cos t‖w‖

 .

Then

c′(t) =

 0 0 0
0 −‖w‖ sin t‖w‖ −‖w‖ cos t‖w‖
0 −‖w‖ cos t‖w‖ −‖w‖ sin t‖w‖


= c(t)ŵ = TILc(t)(ŵ) = Xŵ(c(t)),

where Xŵ is the left invariant vector field corresponding to ŵ. Therefore,
c(t) is an integral curve of Xŵ; but exp(tŵ) is also an integral curve of Xŵ.
Since both agree at t = 0, exp(tŵ) = c(t), for all t ∈ R. But the matrix
definition of c(t) expresses it as a rotation by an angle t‖w‖ about the
axis w. ¥
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Despite Euler’s theorem, it might be good to recall now that SO(3) can-
not be written as S2 × S1; see Exercise 1.2-4.

Amplifying on Proposition 9.2.7, we give the following explicit formula
for exp ξ, where ξ ∈ so(3), due to Rodrigues [1840]:

exp[v̂] = I +
sin ‖v‖
‖v‖ v̂ + 1

2

 sin
(
‖v‖

2

)
‖v‖

2

2

v̂2. (9.2.5)

(See also Helgason [1978], Exercise 1, p. 249 and see Altmann [1986] for
some interesting history of this formula.)

Proof of Rodrigues’ Formula. By (9.2.4),

v̂2w = v × (v ×w) = 〈v,w〉v − ‖v‖2w. (9.2.6)

Consequently, we have the recurrence relations

v̂3 = −‖v‖2v̂, v̂4 = −‖v‖2v̂2, v̂5 = ‖v‖4v̂, v̂6 = ‖v‖4v̂2, . . . .

Splitting the exponential series in odd and even powers,

exp[v̂] = I +
[
I − ‖v‖

2

3!
+
‖v‖4
5!
− · · ·+ (−1)n+1 ‖v‖2n

2n + 1!
+ · · ·

]
v̂

+
[

1
2!
− ‖v‖

2

4!
+
‖v‖4
6!

+ · · ·+ (−1)n−1 ‖v‖n−2

(2n)!
+ · · ·

]
v̂2

= I +
sin ‖v‖
‖v‖ v̂ +

1− cos ‖v‖
‖v‖2 v̂2, (9.2.7)

and so the result follows from identity 2 sin2(‖v‖/2) = 1− cos ‖v‖. ¥

The following alternative expression, equivalent to (9.2.5), is often useful.
Set n = v/‖v‖ so that ‖n‖ = 1. From (9.2.6) and (9.2.7) we obtain

exp[v̂] = I + (sin ‖v‖)n̂ + (1− cos ‖v‖)[n⊗ n− I]. (9.2.8)

Here, n ⊗ n is the matrix whose entries are ninj , or as a bilinear form,
(n⊗ n)(α, β) = n(α)n(β). Therefore, we obtain a rotation about the unit
vector n = v/‖v‖ of magnitude ‖v‖.

The results (9.2.5) and (9.2.8) are useful in computational solid mechan-
ics, along with their quaternionic counterparts. We shall return to this point
below in connection with SU(2); see Whittaker [1927] and Simo and Fox
[1989] for more information.

. . . . . . . . . . . . . . . . . . . . . . . . . . 2 March 1998—17h27 . . . . . . . . . . . . . . . . . . . . . . . . . .



282 9.2 Some Classical Lie Groups

The Symplectic Group Sp(2n,R). Let

J =
[

0 I
−I 0

]
,

where I is the n× n identity matrix. Recall that A ∈ L(R2n,R2n) is sym-
plectic if AT JA = J. Let Sp(2n,R) be the set of symplectic matrices. For
A a symplectic matrix, J = AT JA gives

1 = det J = (detAT ) · (det J) · (det A) = (detA)2.

Hence
det A = ±1,

and so A ∈ GL(2n,R). Furthermore, if A, B ∈ Sp(2n,R), then

(AB)T J(AB) = BT AT JAB = J.

Hence, AB ∈ Sp(2n,R), and if AT JA = J, then

JA = (AT )−1J = (A−1)T J,

so
J = (A−1)T JA−1 or A−1 ∈ Sp(2n,R).

Thus, Sp(2n,R) is a group. If

A =
[

a b
c d

]
∈ GL(2n,R),

then A ∈ Sp(2n,R) iff aT c and bT d are symmetric and aT d− cT b = I.
A similar submersion argument to the one we used for SL(n,R) and

SO(n) shows that Sp(2n,R) is a Lie subgroup of GL(2n,R), called the
symplectic group. One can show that Sp(2n,R) is not compact by con-
sidering cotangent lifts of translations, for example. The Lie algebra of
Sp(2n,R) is clearly

sp(2n,R) =
{
A ∈ L(R2n,R2n) | AT J+ JA = 0

}
.

If

A =
[

a b
c d

]
∈ sl(2n,R),

then A ∈ sp(2n,R) iff d = −aT , c = cT , and b = bT . The dimension of
sp(2n,R) can be readily calculated to be 2n2 + n.

Proposition 9.2.8. Sp(2n,R) is a noncompact, connected Lie group of
dimension 2n2+n. Its Lie algebra sp(2n,R) consists of the 2n×2n matrices
A satisfying AT J+ JA = 0, where

J =
[

0 I
−I 0

]
with I the n× n identity matrix.
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We shall indicate in §9.3 how one proves that Sp(2n,R) is connected.
Recall that the symplectic group is related to classical mechanics as follows.

The Symplectic Group and Mechanics. Consider a particle of mass
m moving in a potential V (q), where q = (q1, q2, q3) ∈ R3. Newton’s second
law states that the particle moves along a curve q(t) in R3 in such a way
that mq̈ = − grad V (q). Introduce the momentum pi = mq̇i, i = 1, 2, 3,
and the energy

H(q,p) =
1

2m

3∑
i=1

p2
i + V (q).

Compute

∂H

∂qi
=

∂V

∂qi
= −mq̈i = −ṗi, and

∂H

∂pi
=

1
m

pi = q̇i;

hence Newton’s law F = ma is equivalent to Hamilton’s equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, 3.

Writing z = (q,p),

J · grad H(z) =
[

0 I
−I 0

]
∂H

∂q
∂H

∂p

 = (q̇, ṗ) = ż,

so Hamilton’s equations read ż = J · grad H(z). Now let

f : R3 × R3 → R3 × R3

and write w = f(z). If z(t) satisfies Hamilton’s equations

ż = J · grad H(z),

then w(t) = f(z(t)) satisfies ẇ = AT ż , where AT = [∂wi/∂zj ] is the
Jacobian matrix of f . By the chain rule,

ẇ = AT J gradz H(z) = AT JA gradw H(z(w)).

Thus, the equations for w(t) have the form of Hamilton’s equations with
energy K(w) = H(z(w)) if and only if AT JA = J; that is, iff A is symplectic.
A nonlinear transformation f is canonical iff its Jacobian is symplectic.

As a special case, consider a linear map A ∈ Sp(2n,R) and let w = Az.
Suppose H is quadratic, that is, of the form H(z) = 〈z, Bz〉 /2, where B is
a symmetric (2n× 2n) matrix. Then

grad H(z) · δz = 1
2 〈δz, Bz〉+ 〈z, Bδz〉

= 1
2 (〈δz, Bz〉+ 〈Bz, δz〉) = 〈δz, Bz〉 ,
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so grad H(z) = Bz and thus the equations of motion become the linear
equations ż = JBz. Now

ẇ = Aż = AJBz = J(AT )−1Bz = J(AT )−1BA−1Az = JB′w,

where B′ = (AT )−1BA−1 is symmetric. For the new Hamiltonian we get

H ′(w) =
〈
w, (AT )−1BA−1w

〉
=
〈
A−1w, BA−1w

〉
= H(A−1w) = H(z).

Thus, Sp(2n,R) is the linear invariance group of classical mechanics.

Complex Groups. Many important Lie groups involve complex matri-
ces. It is proved. As in the real case,

GL(n,C) = {n× n invertible complex matrices}

is an open set in L(Cn,Cn) = {n× n complex matrices}. Clearly GL(n,C)
is a group under matrix multiplication. Therefore, GL(n,C) is a Lie group,
and has a Lie algebra gl(n,C) = {n × n complex matrices} = L(Cn,Cn).
Hence GL(n,C) has complex dimension n2, that is, real dimension 2n2.
The group GL(n,C) is connected, while GL(n,R) is not.

The complex special linear group

SL(n,C) = {A ∈ GL(n,C) | det A = 1}

is a Lie subgroup of GL(n,C) of (real) dimension 2(n2− 1). Its Lie algebra
is sl(n,C) = {A ∈ gl(n,C) | trA = 0}.

The unitary group U(n) will now be defined. Recall that Cn has the
Hermitian inner product:

〈x,y〉 =
n∑

i=0

xiȳi,

where x =
(
x1, . . . , xn

)
∈ Cn, and y =

(
y1, . . . , yn

)
∈ Cn, and ȳi denotes

the complex conjugate. Let

U(n) = {A ∈ GL(n,C) | 〈Ax, Ay〉 = 〈x,y〉}.

The orthogonality condition 〈Ax, Ay〉 = 〈x,y〉 is equivalent to AA† = I,
where A† = ĀT , that is, 〈Ax,y〉 =

〈
x, A†y

〉
. From |det A| = 1, we see

that det maps U(n) into the unit circle S1 = {z ∈ C | |z| = 1}. As is to
be expected by now, U(n) is a closed Lie subgroup of GL(n,C) with Lie
algebra

u(n) = {A ∈ L(Cn,Cn) | 〈Ax,y〉 = −〈x, Ay〉};

U(n) is compact and connected, and has (real) dimension n2. In the special
case n = 1, a complex linear map ϕ : C → C is multiplication by some
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complex number z, and ϕ is an isometry if and only if |z| = 1. In this way
the group U(1) is identified with the unit circle S1.

The special unitary group

SU(n) = {A ∈ U(n) | det A = 1}

is a closed Lie subgroup of U(n) with Lie algebra

su(n) = {A ∈ L(Cn,Cn) | 〈Ax,y〉 = −〈x, Ay〉 and trA = 0}.

SU(n) is compact and connected, and has (real) dimension n2 − 1.
In the special case n = 2, dim SU(2) = 3. Also, SU(2) is diffeomorphic to

the three-sphere S3 = {x ∈ R4 | ‖x‖ = 1}, with the diffeomorphism given
by

x = (x1, x2, x3, x4) ∈ S3 ⊂ R4 7→
[

x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

]
∈ SU(2).

Therefore, SU(2) is simply connected. The group SU(2) is used in the con-
struction of the (nonabelian) gauge group for the Yang-Mills equations in
elementary particle physics.

Under the identification Cn = Rn ⊕ iRn, we can consider the complex
matrix groups GL(n,C), U(n), and SU(n) as Lie subgroups of the real
matrix group GL(2n,R). The symplectic group is related to the unitary
group U(n) by

Sp(2n,R) ∩O(2n,R) = U(n,C).

More on the Group SU(2). Next we outline the relationship between
SU(2) and SO(3). We begin by noting that SO(3) is diffeomorphic to RP3.
To see this, map the unit ball D in R3 to SO(3) by sending (x, y, z) to
the rotation about (x, y, z) through angle π

√
x2 + y2 + z2 (and (0, 0, 0) to

the identity). Then D, with antipodal points on the boundary identified, is
diffeomorphic to SO(3) by mapping D to the upper hemisphere of S3 by

(x, y, z) 7→
(
x, y, z,

√
1− x2 − y2 − z2

)
.

We see that D with antipodal points on the boundary identified is dif-
feomorphic to the upper hemisphere in S3 with antipodal points on the
equator identified; this latter manifold is RP3. This construction thus in-
duces a diffeomorphism of RP3 with SO(3).

Let σ1, σ2, σ3 be the Pauli spin matrices, defined by

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, and σ3 =

[
1 0
0 −1

]
,

and let σ = (σ1, σ2, σ3). Then one checks that

[σ1, σ2] = 2iσ3 (plus cyclic permutations)
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from which one finds that the map

x 7→ x̃ =
1
2i

x · σ =
1
2

(
−ix3 −ix1 − x2

−ix1 + x2 ix3

)
,

where x · σ = x1σ1 + x2σ2 + x3σ3, is a Lie algebra isomorphism between
R3 and the (2 × 2) skew-Hermitian traceless matrices (the Lie algebra of
SU(2)); that is, [x̃, ỹ] = (x× y)˜. Note that

− det(x · σ) = ‖x‖2, and trace (x̃ỹ) = − 1
2x · y.

Define the Lie group homomorphism π : SU(2)→ GL(3,R) by

(π(A)(x)) · σ = A(x · σ)A† = A(x · σ)A−1.

Since det(A(x · σ)A−1) = det(x · σ), it follows that

π(SU(2)) ⊂ O(3).

But π(SU(2)) is connected, being the continuous image of a connected
space, and so

π(SU(2)) ⊂ SO(3).

From the definition, one sees that π(A) = π(B) iff A = ±B. In fact, π is
onto and is a local diffeomorphism. Indeed, if α̃ ∈ su(2), then

(Teπ(α̃)x) · σ = (x · σ)α̃+ + 2(x · σ)
= [x · σ, α̃] = 2i[x̃, α̃]

= 2i(x× α)˜= (x× α) · σ,

that is, Teπ(α̃) = α̂. Thus,

Teπ : su(2) −→ so(3)

is a Lie algebra isomorphism and hence is a local diffemorphism in a neigh-
borhood of the identity. Since π is a Lie group homomorphism it is a local
diffeomorphism around every point. In particular, π(SU(2)) is open and
hence closed (its complement is a union of open cosets) in SO(3)). Since it
is nonempty and SO(3)) is connected we have π(SU(2)) = SO(3). There-
fore,

π : SU(2)→ SO(3)

is a 2 to 1 surjective submersion. Summarizing, we have the commutative
diagram in Figure 9.2.1. Regarding S3 as the unit sphere in C2 and letting
S1 act on C2 by rotating each factor, taking the quotient space gives a map
h : S3 → CP1 called the Hopf fibration.

This relation between SU(2) and SO(3) determined by the map π is re-
lated to the quaternionic representation of rotations, and is usually referred
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S3 SU(2)

RP3 SO(3)

≈

≈

2 : 1 2 : 1

-

-
? ?

Figure 9.2.1. The link between SU(2) and SO(3).

to as the Euler-Rodriguez parametrization . This is important because
it, unlike Euler angles, gives a singularity free representation that is of cru-
cial importance in computational mechanics (see, for example, Wendlandt
and Marsden [1977] and references therein). We outline a few key points.

Consider elements (q0, q1, q2, q3) = (q0,q) ∈ R × R3 with unit length;
that is, (q0)2 + ‖q‖2 = 1, defining S3 ⊂ R4. (As above, S3 ∼= SU(2).) The
four-tuple (qi) is a quaternion with scalar part q0 and vector part q.
One usually writes

(q0,q) = q0 + q1i + q2j + q3k,

where i2 = j2 = k2 = −1 and ij = k (and cyclic permutations thereof)
defining the multiplicative structure. Let ω be given along with a unit
vector n. Then let

q0 = cos(ω/2) and q = sin(ω/2)n. (9.2.9)

Then Rodrigues’ formula (9.2.5) reads

exp(ωn) = [(q0)2 − ‖q‖]I + 2q0q̂ + 2q⊗ q, (9.2.10)

where ωn ∈ R3 is thought of as an infinitessimal rotation. This expression
then produces a rotation associated to each unit quaternion (q0,q). In
addition, using this parametrization, Rodrigues [1840] found a beautiful
way of expressing the product of two rotations exp(ω1η1) · exp(ω2η2) in
terms of the given data. In fact, this was an early exploration of the spin
group! We refer to Whittaker [1927], §7, Altmann [1986], Enos [1993], Simo
and Lewis [1994] and references therein for further information.

Exercises

¦ Exercise 9.2-1. Describe the set of matrices in SO(3) that are also sym-
metric.

¦ Exercise 9.2-2. If A ∈ Sp(2n,R), shows that AT ∈ Sp(2n,R) as well.

¦ Exercise 9.2-3. Show that Sp(2n,R) ∩ SO(2n) = U(n).
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9.3 Actions of Lie Groups

In this section we develop some basic facts about actions of Lie groups on
manifolds. One of our main applications later will be the description of
Hamiltonian systems with symmetry groups.

Basic Definitions. We begin with the definition of the action of a Lie
group G on a manifold M .

Definition 9.3.1. Let M be a manifold and let G be a Lie group. A (left)
action of a Lie group G on M is a smooth mapping Φ : G×M →M such
that:

(i) Φ(e, x) = x, for all x ∈M ; and

(ii) Φ(g,Φ(h, x)) = Φ(gh, x), for all g, h ∈ G and x ∈M .

A right action is a map Ψ : M ×G→M that satisfies Ψ(x, e) = x and
Ψ(Ψ(x, g), h) = Ψ(x, gh). We sometimes use the notation g ·x = Φ(g, x) for
left actions, and x ·g = Ψ(x, g) for right actions. In the infinite-dimensional
case there are important situations where care with the smoothness is
needed. For the formal development we assume we are in the Banach-Lie
group context.

For every g ∈ G let Φg : M → M be given by x 7→ Φ(g, x). Then (i)
becomes Φe = idM while (ii) becomes Φgh = Φg ◦ Φh. Definition 9.3.1
can now be rephrased by saying that the map g 7→ Φg is a homomorphism
of G into Diff(M), the group of diffeomorphisms of M . In the special but
important case where M is a Banach space V and each Φg : V → V is
a continuous linear transformation, the action Φ of G on V is called a
representation of G on V .

Examples

(a) SO(3) acts on R3 by (A, x) 7→ Ax. This action leaves the two-sphere
S2 invariant, so the same formula defines an action of SO(3) on S2. ¨

(b) GL(n,R) acts on Rn by (A, x) 7→ Ax. ¨

(c) Let X be a complete vector field on M , that is, one for which the
flow Ft of X is defined for all t ∈ R. Then Ft : M → M defines an action
of R on M . ¨

Orbits and Isotropy. If Φ is an action of G on M and x ∈M , the orbit
of x is defined by

Orb(x) = {Φg(x) | g ∈ G} ⊂M.
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In finite dimensions one can show that Orb(x) is an immersed submanifold
of M (Abraham and Marsden [1978, p. 265]). For x ∈M , the isotropy (or
stabilizer or symmetry) group of Φ at x is given by

Gx := {g ∈ G | Φg(x) = x} ⊂ G.

Since the map Φx : G → M defined by Φx(g) = Φ(g, x) is continuous,
Gx = (Φx)−1(x) is a closed subgroup and hence a Lie subgroup of G.
The manifold structure of Orb(x) is defined by requiring the bijective map
[g] ∈ G/Gx 7→ g · x ∈ Orb(x) to be a diffeomorphism. That G/Gx is a
smooth manifold follows from Proposition 9.3.2, which is discussed below.

An action is said to be:

1. transitive if there is only one orbit or, equivalently, if for every
x, y ∈M there is a g ∈ G such that g · x = y;

2. effective (or faithful) if Φg = idM implies g = e; that is, g 7→ Φg is
one-to-one; and

3. free if it has no fixed points, that is, Φg(x) = x implies g = e or,
equivalently, if for each x ∈ M , g 7→ Φg(x) is one-to-one. Note that
an action is free iff Gx = {e}, for all x ∈ M , and that every free
action is faithful.

Examples

(a) Left translation Lg : G → G; h 7→ gh, defines a transitive and free
action of G on itself. Note that right multiplication Rg : G → G, h 7→ hg,
does not define a left action because Rgh = Rh ◦ Rg, so that g 7→ Rg is
an antihomomorphism. However, g 7→ Rg does define a right action, while
g 7→ Rg−1 defines a left action of G on itself. ¨

(b) G acts on G by conjugation, g 7→ Ig = Rg−1◦Lg. The map Ig : G→ G
given by h 7→ ghg−1 is the inner automorphism associated with g.
Orbits of this action are called conjugacy classes or, in the case of matrix
groups, similarity classes. ¨

(c) Adjoint Action. Differentiating conjugation at e, we get the ad-
joint representation of G on g:

Adg := TeIg : TeG = g→ TeG = g.

Explicitly, the adjoint action of G on g is given by

Ad : G× g→ g, Adg(ξ) = Te(Rg−1 ◦ Lg)ξ.

For example, for SO(3) we have IA(B) = ABA−1, so differentiating with
respect to B at B = identity gives AdA v̂ = Av̂A−1. However,

(AdA v̂)(w) = Av̂(A−1w) = A(v ×A−1w) = Av ×w,
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so
(AdA v̂) = (Av) .̂

Identifying so(3) ∼= R3, we get AdA v = Av. ¨

(d) Coadjoint Action. The coadjoint action of G on g∗, the dual of
the Lie algebra g of G, is defined as follows. Let Ad∗g : g∗ → g∗ be the dual
of Adg, defined by 〈

Ad∗g α, ξ
〉

= 〈α,Adg ξ〉
for α ∈ g∗, and ξ ∈ g. Then the map

Φ∗ : G× g∗ → g∗ given by (g, α) 7→ Ad∗g−1 α

is the coadjoint action of G on g∗. The corresponding coadjoint repre-
sentation of G on g∗ is denoted

Ad∗ : G→ GL(g∗, g∗), Ad∗g−1 =
(
Te(Rg ◦ Lg−1)

)∗
.

We will avoid the introduction of yet another ∗ by writing (Adg−1)∗ or
simply Ad∗g−1 , where ∗ denotes the usual linear-algebraic dual, rather than
Ad∗(g), in which ∗ is simply part of the name of the function Ad∗. Any
representation of G on a vector space V similarly induces a contragredient
representation of G on V ∗. ¨

Quotient (Orbit) Spaces. An action of Φ of G on a manifold M defines
an equivalence relation on M by the relation of belonging to the same orbit;
explicitly, for x, y ∈ M , we write x ∼ y if there exists a g ∈ G such that
g ·x = y, that is if y ∈ Orb(x) (and hence x ∈ Orb(y)). We let M/G be the
set of these equivalence classes, that is, the set of orbits, sometimes called
the orbit space. Let

π : M →M/G : x 7→ Orb(x),

and give M/G the quotient topology by defining U ⊂ M/G to be open
if and only if π−1(U) is open in M . To guarantee that the orbit space
M/G has a smooth manifold structure, further conditions on the action
are required.

An action Φ : G×M →M is called proper if the mapping

Φ̃ : G×M →M ×M,

defined by
Φ̃(g, x) = (x,Φ(g, x)),

is proper. In finite dimensions this means that if K ⊂M ×M is compact,
then Φ̃−1(K) is compact. In general, this means that if {xn} is a convergent
sequence in M and Φgnxn converges in M , then {gn} has a convergent sub-
sequence in G. For instance, if G is compact, this condition is automatically
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satisfied. Orbits of proper Lie group actions are closed and hence embedded
submanifolds. The next proposition gives a useful sufficient condition for
M/G to be a smooth manifold.

Proposition 9.3.2. If Φ : G×M →M is a proper and free action, then
M/G is a smooth manifold and π : M →M/G is a smooth submersion.

For the proof, we refer to Abraham and Marsden [1978], Proposition
4.2.23. (In infinite dimensions one uses these ideas but additional techni-
calities often arise; see Ebin [1970] and Isenberg and Marsden [1982].) The
idea of the chart construction for M/G is based on the following observa-
tion. If x ∈ M , then there is an isomorphism ϕx of Tπ(x)(M/G) with the
quotient space TxM/Tx Orb(x). Moreover, if y = Φg(x), then TxΦg induces
an isomorphism

ψx,y : TxM/Tx Orb(x)→ TyM/Ty Orb(y)

satisfying ϕy ◦ ψx,y = ϕx.

Examples

(a) G = R acts on M = R by translations; explicitly,

Φ : G×M →M, Φ(s, x) = x + s.

Then for x ∈ R, Orb(x) = R. Hence M/G is a single point and the action
is transitive, proper, and free. ¨

(b) G = SO(3), M = R3 (∼= so(3)∗). Consider the action for x ∈ R3 and
A ∈ SO(3) given by ΦAx = Ax. Then

Orb(x) = {y ∈ R3 | ‖y‖ = ‖x‖} = a sphere of radius ‖x‖.

Hence M/G ∼= R+. The set

R+ = {r ∈ R | r ≥ 0}

is not a manifold because it includes the endpoint r = 0. Indeed, the action
is not free, since it has the fixed point 0 ∈ R3. ¨

(c) Let G be abelian. Then Adg = idg, Ad∗g−1 = idg∗ and the adjoint and
coadjoint orbits of ξ ∈ g and α ∈ g∗, respectively, are the one-point sets
{ξ} and {α}. ¨

We will see later that coadjoint orbits can be natural phase spaces for
some mechanical systems like the rigid body; in particular, they are always
even dimensional.
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Infinitessimal Generators. Next we turn to the infinitessimal descrip-
tion of an action, which will be a crucial concept for mechanics.

Definition 9.3.3. Suppose Φ : G×M →M is an action. For ξ ∈ g, the
map Φξ : R×M →M , defined by

Φξ(t, x) = Φ(exp tξ, x),

is an R-action on M . In other words, Φexp tξ : M → M is a flow on M .
The corresponding vector field on M , given by

ξM (x) :=
d

dt

∣∣∣∣
t=0

Φexp tξ(x),

is called the infinitessimal generator of the action corresponding to ξ.

Proposition 9.3.4. The tangent space at x to an orbit Orb(x0) is

Tx Orb(x0) = {ξM (x) | ξ ∈ g} ,

where Orb(x0) is endowed with the manifold structure making G/Gx0 →
Orb(x0) into a diffeomorphism.

The idea is as follows: Let σξ(t) be a curve in G tangent to ξ at t =
0. Then the map Φx,ξ(t) = Φσξ(t)(x) is a smooth curve in Orb(x0) with
Φx,ξ(0) = x. Hence

d

dt

∣∣∣∣
t=0

Φx,ξ(t) =
d

dt

∣∣∣∣
t=0

Φσξ(t)(x) = ξM (x)

is a tangent vector at x to Orb(x0). Furthermore, each tangent vector is
obtained in this way since tangent vectors are equivalence classes of such
curves.

The Lie algebra of the isotropy group Gx, x ∈M , called the isotropy (or
stabilizer , or symmetry) algebra at x equals, by Proposition 9.1.10,
gx = {ξ ∈ g | ξM (x) = 0}.

Examples

(a) The infinitessimal generators for the adjoint action are computed as
follows. Let

Ad : G× g→ g, Adg(η) = Te(Rg−1 ◦ Lg)(η).

For ξ ∈ g, we compute the corresponding infinitessimal generator ξg. By
definition,

ξg(η) =
(

d

dt

)∣∣∣∣
t=0

Adexp tξ(η)
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. By (9.1.5), this equals [ξ, η]. Thus, for the adjoint action,

ξg = adξ; i.e., ξg(η) = [ξ, η]. ¨

(b) We illustrate (a) for the group SO(3) as follows. Let A(t) = exp(tC),
where C ∈ so(3); then A(0) = I and A′(0) = C. Thus, with B ∈ so(3),

d

dt

∣∣∣∣
t=0

(Adexp tC B) =
d

dt

∣∣∣∣
t=0

(exp(tC))B(exp(tC))−1)

=
d

dt

∣∣∣∣
t=0

(A(t)BA(t)−1)

= A′(0)BA−1(0) + A(0)BA−1′(0).

Differentiating A(t)A−1(t) = I, we find

d

dt
(A−1(t)) = −A−1(t)A′(t)A−1(t),

so that A−1′(0) = −A′(0) = −C. Then the preceding equation becomes

d

dt

∣∣∣∣
t=0

(Adexp tC B) = CB −BC = [C, B],

as expected. ¨

(c) Let Ad∗ : G × g∗ → g∗ be the coadjoint action (g, α) 7→ Ad∗g−1 α. If
ξ ∈ g, we compute for α ∈ g∗ and η ∈ g

〈ξg∗(α), η〉 =
〈

d

dt

∣∣∣∣
t=0

Ad∗exp(−tξ)(α), η
〉

=
d

dt

∣∣∣∣
t=0

〈
Ad∗exp(−tξ)(α), η

〉
=

d

dt

∣∣∣∣
t=0

〈
α,Adexp(−tξ) η

〉
=
〈

α,
d

dt

∣∣∣∣
t=0

Adexp(−tξ) η

〉
= 〈α,−[ξ, η]〉 = −〈α, adξ(η)〉 = −

〈
ad∗ξ(α), η

〉
.

Hence

ξg∗ = − ad∗ξ , or ξg∗(α) = −〈α, [ξ, ·]〉 . (9.3.1)

¨

(d) Identifying so(3) ∼= (R3,×) and so(3)∗ ∼= R3∗ , using the pairing given
by the standard Euclidean inner product, (9.3.1) reads

ξso(3)∗(l) = −l · (ξ × ·),
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for l ∈ so(3)∗ and ξ ∈ so(3). For η ∈ so(3), we have〈
ξso(3)∗(l), η

〉
= −l · (ξ × η) = −(l × ξ) · η = −〈l × ξ, η〉,

so that

ξR3(l) = −l × ξ = ξ × l.

As expected, ξR3(l) ∈ Tl Orb(l) is tangent to Orb(l) (see Figure 9.3.1).
Allowing ξ to vary in so(3) ∼= R3, one obtains all of Tl Orb(l), consistent
with Proposition 9.3.4. ¨

ξ

ξ × l

l

�
�
�
�

Figure 9.3.1. ξR3(l) is tangent to Orb(l).

Equivariance. A map between two spaces is quivariant when it respects
group actions on these spaces. More precisely, we state:

Definition 9.3.5. Let M and N be manifolds and let G be a Lie group
which acts on M by Φg : M → M , and on N by Ψg : N → N . A smooth
map f : M → N is called equivariant with respect to these actions if, for
all g ∈ G,

f ◦ Φg = Ψg ◦ f, (9.3.2)

that is, if the diagram in Figure 9.3.2 commutes.

Setting g = exp(tξ) and differentiating (9.3.2) with respect to t at t = 0
gives Tf ◦ ξM = ξN ◦ f . In other words, ξM and ξN are f -related. In
particular, if f is an equivariant diffeomorphism, then f∗ξN = ξM .

Also note that if M/G and N/G are both smooth manifolds with the
canonical projections smooth submersions, an equivariant map f : M → N
induces a smooth map fG : M/G→ N/G.

. . . . . . . . . . . . . . . . . . . . . . . . . . 2 March 1998—17h27 . . . . . . . . . . . . . . . . . . . . . . . . . .



9.3 Actions of Lie Groups 295

M N

M N

f

f

Φg Ψg

-

-
? ?

Figure 9.3.2. Commutative diagram for equivariance.

Averaging. A useful device for constructing invariant objects is by av-
eraging. For example, let G be a compact group acting on a manifold M
and let α be a diferential form on M . Then we form

α =
∫

G

Φ∗gα dµ(g),

where µ is Haar measure on G. One checks that α is invariant. One can do
the same with other tensors, such as Riemannian metrics on M , to obtain
invariant ones.

Brackets of generators. Now we come to an important formula relating
the Jacobi–Lie bracket of two infinitessimal generators with the Lie algebra
bracket.

Proposition 9.3.6. Let the Lie group G act on the left on the manifold
M . Then the infinitessimal generator map ξ 7→ ξM of the Lie algebra g

of G into the Lie algebra X(M) of vector fields of M is a Lie algebra
antihomomorphism; that is, (aξ + bη)M = aξM + bηM and

[ξM , ηM ] = −[ξ, η]M ,

for all ξ, η ∈ g, and a, b ∈ R.

To prove this, we use the following lemma:

Lemma 9.3.7.

(i) Let c(t) be a curve in G, c(0) = e, c′(0) = ξ ∈ g. Then

ξM (x) =
d

dt

∣∣∣∣
t=0

Φc(t)(x).

(ii) For every g ∈ G,
(Adg ξ)M = Φ∗g−1ξM .

Proof.
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(i) Let Φx : G→M be the map Φx(g) = Φ(g, x). Since Φx is smooth, the
definition of the infinitessimal generator says that TeΦx(ξ) = ξM (x).
Thus, (i) follows by the chain rule.

(ii) We have

(Adg ξ)M (x) =
d

dt

∣∣∣∣
t=0

Φ(exp(t Adg ξ), x)

=
d

dt

∣∣∣∣
t=0

Φ(g(exp tξ)g−1, x) (by Corollary 9.1.7)

=
d

dt

∣∣∣∣
t=0

(Φg ◦ Φexp tξ ◦ Φg−1(x))

= TΦ−1
g (x)Φg

(
ξM

(
Φg−1(x)

))
=
(
Φ∗g−1ξM

)
(x). ¥

Proof of Proposition 9.3.6. Linearity follows since ξM (x) = TeΦx(ξ).
To prove the second relation, put g = exp tη in (ii) of the lemma to get

(Adexp tη ξ)M = Φ∗exp(−tη)ξM .

But Φexp(−tη) is the flow of −ηM , so differentiating at t = 0 the right-hand
side gives [ξM , ηM ]. The derivative of the left-hand side at t = 0 equals
[η, ξ]M by the preceding Example (a). ¥

In view of this proposition one defines a left Lie algebra action of a
manifold M as a Lie algebra antihomomorphism ξ ∈ g 7→ ξM ∈ X(M),
such that the mapping (ξ, x) ∈ g×M 7→ ξM (x) ∈ TM is smooth.

Let Φ : G × G → G denote the action of G on itself by left translation:
Φ(g, h) = Lgh. For ξ ∈ g, let Yξ be the corresponding right invariant vector
field on G. Then

ξG(g) = Yξ(g) = TeRg(ξ),

and similarly, the infinitessimal generator of right translation is the left
invariant vector field g 7→ TeLg(ξ).

Derivatives of Curves. It is convenient to have formulas for the deriva-
tives of curves associated with the adjoint and coadjoint actions. For ex-
ample, let g(t) be a (smooth) curve in G and η(t) a (smooth) curve in g.
Let the action be denoted by concatination:

g(t)η(t) = Adg(t) η(t).

Then we claim:

d

dt
g(t)η(t) = g(t)

{
[ξ(t), η(t)] +

dη

dt

}
, (9.3.3)
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where
ξ(t) = g(t)−1ġ(t) := Tg(t)L

−1
g(t)

dg

dt
∈ g.

Proof of claim. We have

d

dt

∣∣∣∣
t=t0

Adg(t) η(t) =
d

dt

∣∣∣∣
t=t0

{
g(t0) · [g(t0)−1g(t)]η(t)

}
= g(t0)

d

dt

∣∣∣∣
t=t0

{
[g(t0)−1g(t)]η(t)

}
,

where g(t0)· denotes the Ad-action, which is linear . Now g(t0)−1g(t) is a
curve through the identity at t = t0 with tangent vector ξ(t0), so the above
becomes

g(t0)
{

[ξ(t0), η(t0)] +
dη(t0)

dt

}
.

¥

Similarly for the coadjoint action, we write

g(t)µ(t) = Ad∗g(t)−1 µ(t)

and then as above, one proves that

d

dt
[g(t)µ(t)] = g(t)

{
− ad∗ξ(t) +

dµ

dt

}
(9.3.4)

which we could write, extending our concatenation notation to Lie algebra
actions as well,

d

dt
[g(t)µ(t)] = g(t)

{
ξ(t) · µ(t) +

dµ

dt

}
For right actions, these become

d

dt
[η(t)g(t)] =

{
η(t) · ζ(t) +

dη

dt

}
g(t) (9.3.5)

and

d

dt
[µ(t)g(t)] =

{
µ(t) · ζ(t) +

dµ

dt

}
g(t), (9.3.6)

where ζ(t) = ġ(t)g(t)−1,

η(t)g(t) = Adg(t)−1 η(t), and η(t) · ζ(t) = −[ζ(t), η(t)]

and where

µ(t)g(t) = Ad∗g(t) µ(t) and µ(t)ζ(t) = ad∗ζ(t) µ(t).
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Connectivity of Some Classical Groups. First we state two facts
about homogeneous spaces:

1. If H is a closed normal subgroup of the Lie group G (that is, if
h ∈ H and g ∈ G, then ghg−1 ∈ H), then the quotient G/H is
a Lie group and the natural projection π : G → G/H is a smooth
group homomorphism. (This follows from Proposition 9.3.2; see also
Varadarajan [1974] Theorem 2.9.6, p. 80.) Moreover, if H and G/H
are connected then G is connected. Similarly, if H and G/H are
simply connected, then G is simply connected.

2. Let G, M be finite-dimensional and second countable and let Φ :
G ×M → M be a transitive action of G on M and for x ∈ M , let
Gx be the isotropy subgroup of x. Then the map gGx 7→ Φg(x) is
a diffeomorphism of G/Gx onto M . (This follows from Proposition
9.3.2; see also Varadarajan [1974], Theorem 2.9.4, p. 77.)

The action

Φ : GL(n,R)× Rn → Rn, Φ(A, x) = Ax,

restricted to O(n)×Sn−1 induces a transitive action. The isotropy subgroup
of O(n) at en ∈ Sn−1 is O(n− 1). Clearly O(n− 1) is a closed subgroup of
O(n) by embedding any A ∈ O(n− 1) as

Ã =
[

A 0
0 1

]
∈ O(n),

and the elements of O(n−1) leave en fixed. On the other hand, if A ∈ O(n)
and A(en) = en, then A ∈ O(n− 1). It follows from 2 that the map

O(n)/ O(n− 1)→ Sn−1 : A ·O(n− 1) 7→ A(en)

is a diffeomorphism. By a similar argument, there is a diffeomorphism

Sn−1 ∼= SO(n)/ SO(n− 1).

The natural action of GL(n,C) on Cn similarly induces a diffeomorphism
of S2n−1 ⊂ R2n with the homogeneous space U(n)/ U(n−1). Moreover, we
get S2n−1 ∼= SU(n)/ SU(n− 1). In particular, since SU(1) consists only of
the 1 × 1 identity matrix, S3 is diffeomorphic with SU(2), a fact already
proved at the end of §9.2.

Proposition 9.3.8. Each of the Lie groups SO(n), SU(n), and U(n) is
connected for n ≥ 1, and O(n) has two components. The group SU(n) is
simply connected.
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Proof. SO(1) and SU(1) are connected since both consist only of the 1×1
identity matrix and U(1) is connected since U(1) = {z ∈ C | |z| = 1} = S1.
That SO(n), SU(n), and U(n) are connected for all n now follows from
fact 1 above, using induction on n and the representation of the spheres
as homogeneous spaces. Since every matrix A in O(n) has determinant
±1, the orthogonal group can be written as the union of two nonempty
disjoint connected open subsets as follows: O(n) = SO(n)∪A ·SO(n) where
A = diag(−1, 1, 1, . . . , 1). Thus, O(n) has two components. ¥

Proposition 9.3.9. GL(n,R) has two components.

Proof. Consider the following two disjoint homeomorphic open subsets
of GL(n,R):

GL(n,R)+ = {A ∈ GL(n,R) | det A > 0}
and

GL(n,R)− = {B ∈ GL(n,R) | det B < 0}.
It suffices to prove that (the subgroup) GL(n,R)+ is connected. To do
this we show that each element of GL(n,R)+ can be joined to the identity
matrix I by a continuous curve. Recall that each A ∈ GL(n,R) has a polar
decomposition A = PR, where P is a positive-definite symmetric matrix
and R ∈ O(n). If A ∈ GL(n,R)+, then R must have positive determinant,
that is, R ∈ SO(n). Let Pt = tI + (1− t)P , t ∈ [0, 1]. Then Pt is positive-
definite for each t, so the path t 7→ PtR is a continuous curve in GL(n,R)+

joining A to R. Since SO(n) is connected, and therefore pathwise connected,
R can be joined to I by a continuous curve. Thus, GL(n,R)+ is pathwise
connected. ¥

Here is a general strategy for proving the connectivity of the classi-
cal groups; see, for example Knapp [1996]. This works, in particular, for
Sp(2m,R). Let G be a subgroup of GL(n,R) (resp. GL(N,C)) defined as the
zero set of a collection of real-valued poynomials in the (real and imaginary
parts) of the matrix entries. Assume, also, that G is closed under takgin
adjoings (see Exercise 9.2-2 for the case of Sp(2m,R). Let K = G ∩O(n)
(resp. U(n)) and let p be the set of Hermitian matrices in A. (For Sp(2m,R),
n = 2m and K = U(m); see Exercise 9.2-3). The polar decomposition says
that (k, ξ ∈ K × p 7→ k exp(ξ) ∈ G is a homeomorphism. It follows that,
since ξ lies in a connected space, G is connected iff K is connected. For
Sp(2m,R) our results above show U(m) is connected, so Sp(2m,R) is con-
nected. Tudor: where

did the zero
set of polys get
used?Examples

(a) Isometry groups. Let E be a finite-dimensional vector space with
a bilinear form 〈 , 〉. Let G be the group of isometries of E, that is, F is
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an isomorphism of E onto E and 〈Fe, Fe′〉 = 〈e, e′〉, for all e, and e′ ∈ E.
Then G is a subgroup and a closed submanifold of GL(E). The Lie algebra
of G is

{K ∈ L(E) | 〈Ke, e′〉+ 〈e, Ke′〉 = 0, for all e, e′ ∈ E}. ¨

(b) Lorentz group. If 〈 , 〉 denotes the Minkowski metric on R4, that is,

〈x, y〉 =
3∑

i=1

xiyi − x4y4,

then the group of linear isometries is called the Lorentz group L. The
dimension of L is six and L has four connected components. If

S =
[

I3 0
0 −1

]
∈ GL(4,R),

then

L = {A ∈ GL(4,R) | AT SA = S}
and so the Lie algebra of L is

l = {A ∈ L(R4,R4) | SA + AT S = 0}.
The identity component of L is {A ∈ L | det A > 0 and A44 > 0} = L+

↑ ; L

and L+
↑ are not compact. ¨

We need
to say how
simple the
proof is
if G is
compact. The
proof that
is now here
is not very
appealing.
E.g., one
learns
nothing
about
the link
w/maximal
tori; e.g.,
Gµ really
is a torus

(c) Galilean group. Consider the (closed) subgroup G of GL(5,R) that
consists of matrices with the following block structure:

{R, v, a, τ} :=

 R v a
0 1 τ
0 0 1

 ,

where R ∈ SO(3), v, a ∈ R3, and τ ∈ R. This group is called the Galilean
group. Its Lie algebra is a subalgebra of L(R5,R5) given by the set of
matrices of the form

{ω, u, α, θ} :=

 ω̂ u α
0 0 θ
0 0 0

 ,

where ω, u, α ∈ R3, and θ ∈ R. Obviously the Galilean group acts naturally
on R5; moreover it acts naturally on R4, embedded as the following G-
invariant subset of R5: [

x
t

]
7→

x
t
1

 ,

. . . . . . . . . . . . . . . . . . . . . . . . . . 2 March 1998—17h27 . . . . . . . . . . . . . . . . . . . . . . . . . .



9.3 Actions of Lie Groups 301

where x ∈ R3 and t ∈ R. Concretely, the action of {R, v, a, τ} on (x, t) is
given by

(x, t) 7→ (Rx + tv + a, t + τ).

Thus, the Galilean group gives a change of frame of reference (unaffecting
the “absolute time” variable) by rotations (R), space translations (a), time
translations (τ), and going to a moving frame, or boosts (v). ¨

Coadjoint Isotropy Subalgebras Are Generically Abelian (Op-
tional). The aim of this supplement is to prove a theorem of Duflo and
Vergne [1969] showing that, generically, the isotropy algebras for the coad-
joint action are abelian. A very simple example is G = SO(3). Here g∗ ∼= R3

and Gµ = S1 for µ ∈ g∗ and µ 6= 0, and G0 = SO(3). Thus, Gµ is abelian
on the open dense set g∗\{0}.

To prepare for the proof, we shall develop some tools.
If V is a finite-dimensional vector space, a subset A ⊂ V is called alge-

braic if it is the common zero set of a finite number of polynomial functions
on V . It is easy to see that if Ai is the zero set of a finite collection of poly-
nomials Ci, for i = 1, 2, then A1 ∪A2 is the zero set of the collection C1C2

formed by all products of an element in C1 with an element in C2. The
whole space V is the zero set of the constant polynomial equal to 1. Fi-
nally, if Aα is the algebraic set given as the common zeros of some finite
collection of polynomials Cα, where α ranges over some index set, then⋂

α Aα is the zero set of the collection
⋃

α Cα. This zero set can also be
given as the common zeros of a finite collection of polynomials since the
zero set of any collection of polynomials coincides with the zero set of the
ideal in the polynomial ring generated by this collection and any ideal in
the polynomial ring over R is finitely generated (we accept this from alge-
bra). Thus, the collection of algebraic sets in V satisfies the axioms of the
collection of closed sets of a topology which is called the Zariski topology
of V .

Thus, the open sets of this topology are the complements of the algebraic
sets. For example, the algebraic sets of R are just the finite sets, since every
polynomial in R[X] has finitely many real roots (or none at all). Granting
that we have a topology (the hard part), let us show that any Zariski
open set in V is open and dense in the usual topology. Openness is clear,
since algebraic sets are necessarily closed in the usual topology as inverse
images of 0 by a continuous map. To show that a Zariski open set U is
also dense, suppose the contrary, namely, that if x ∈ V \U , then there is a
neighborhood U1 × U2 of x in the usual topology such that

(U1 × U2) ∩ U = ∅ and U1 ⊂ R, U2 ⊂ V2
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are open, where V = R× V2, the splitting being achieved by the choice of
a basis. Since x ∈ V \U , there is a finite collection of polynomials

p1, . . . , pN ∈ R[X1, . . . , Xn], n = dimV,

that vanishes identically on U1 × U2. If x = (x1, . . . , xn) ∈ V , then the
polynomials

qi(X1) = pi(X1, x2, . . . , xn) ∈ R[X1]

all vanish identically on the open set U1 ⊂ R, which is impossible since
each qi has at most a finite number of roots. Therefore, (U1×U2)∩U = ∅
is absurd and hence U must be dense in V .

Theorem 9.3.10 (Duflo and Vergne [1969]). Let g be a finite-dimen-
sional Lie algebra with dual g∗ and let r = min{dim gµ | µ ∈ g∗}. The set
{µ ∈ g∗ | dim gµ = r} is Zariski open and thus open and dense in the usual
topology of g∗. If dim gµ = r, then gµ is abelian.

Proof (Due to J. Carmona, as presented in Rais [1972]). Define the map
ϕµ : G → g∗ by g 7→ Ad∗g−1 µ. This is a smooth map whose range is the
coadjoint orbit Oµ through µ and whose tangent map at the identity is
Teϕµ(ξ) = − ad∗ξ µ. Note that ker Teϕµ = gµ and

range Teϕµ = TµOµ.

Thus, if n = dim g, we have

rank Teϕµ = n− dim gµ ≤ n− r

since dim gµ ≥ r, for all µ ∈ g∗. Therefore,

U = {µ ∈ g∗ | dim gµ = r} = {µ ∈ g∗ | rank(Teϕµ) = n− r}

and n− r is the maximal possible rank of all the linear maps

Teϕµ : g→ g∗, µ ∈ g∗.

Now choose a basis in g and induce the natural bases on g∗ and

L(g, g∗).

Let
Si = {µ ∈ g∗ | rank Teϕµ = n− r − i}, 1 ≤ i ≤ n− r.

Then Si is the zero set of the polynomials in µ obtained by taking all
determinants of the (n − r − i + 1)-minors of the matrix representation
of Teϕµ in these bases. Thus, Si is an algebraic set. Since

⋃n−r
i=1 Si is the

complement of U , if follows that U is a Zariski open set in g∗, and hence
open and dense in the usual topology of g∗.
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Now let µ ∈ g∗ be such that dim gµ = r and let V be a complement to
gµ in g, that is,

g = V ⊕ gµ.

Then Teϕµ|V is injective. Fix ν ∈ g∗ and define

S = {t ∈ R | Teϕµ+tν |V is injective.}

Note that 0 ∈ S and that S is open in R because the set of injective linear
maps is open in L(g, g∗) and µ 7→ Teϕµ is continuous. Thus, S contains
an open neighborhood of 0 in R. Since the rank of a linear map can only
increase by slight perturbations, we have rank

Teϕµ+tν |V ≥ rank Teϕµ|V = n− r,

for |t| small, and by maximality of n− r, this forces rank Teϕµ+tν = n− r
for t in a neighborhood of 0 contained in S. Thus, for |t| small,

Teϕµ+tν |V : V → Tµ+tνOµ+tν

is an isomorphism. Hence, if ξ ∈ gµ, ad∗ξ(µ+ tν) ∈ Tµ+tνOµ+tν is the image
of a unique ξ(t) ∈ V under Teϕµ+tν |V, that is,

ξ(t) = (Teϕµ+tν |V )−1(ad∗ξ(µ + tν)).

This formula shows that for |t| small, t 7→ ξ(t) is a smooth curve in V and
ξ(0) = 0. However, since

ad∗ξ(µ + tν) = −Teϕµ+tν(ξ),

the definition of ξ(t) is equivalent to Teϕµ+tν(ξ(t) + ξ) = 0, that is,

ξ(t) + ξ ∈ gµ+tν .

Similarly, given η ∈ gµ, there exists a unique η(t) ∈ V such that

η(t) + η ∈ gµ+tν , η(0) = 0,

and t 7→ η(t) is smooth for small |t|. Therefore, the map

t 7→ 〈µ + tν, [ξ(t) + ξ, η(t) + η]〉

is identically zero for small |t|. In particular, its derivative at t = 0 is also
zero. But this derivative equals

〈ν, [ξ, η]〉+ 〈µ, [ξ′(0), η]〉+ 〈µ, [ξ, η′(0)]〉
= 〈ν, [ξ, η]〉 −

〈
ad∗η µ, ξ′(0)

〉
+
〈
ad∗ξ µ, η′(0)

〉
= 〈ν, [ξ, η]〉 ,

since ξ, η ∈ gµ. Thus, 〈ν, [ξ, η]〉 = 0 for any ν ∈ g∗, that is,

[ξ, η] = 0.

Since ξ, η ∈ gµ are arbitrary, it follows that gµ is abelian. ¥
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Remarks on Infinite Dimensional Groups. We can use a slight rein-
terpretation of the formulae in this section to calculate the Lie algebra
structure of some infinite-dimensional groups. Here we will treat this topic
only formally, that is, we assume that the spaces involved are manifolds and
do not specify the function space topologies. For the formal calculations,
these structures are not needed, but the reader should be aware that there
is a mathematical gap here. (See Ebin and Marsden [1970] and Adams,
Ratiu, and Schmid [1986a,b] for more information.)

Given a manifold M , let Diff(M) denote the group of all diffeomorphisms
of M . The group operation is composition. The Lie algebra of Diff(M), as
a vector space, consists of vector fields on M ; indeed the flow of a vector
field is a curve in Diff(M) and its tangent vector at t = 0 is the given vector
field.

To determine the Lie algebra bracket we consider the action of an ar-
bitrary Lie group G on M . Such an action of G on M may be regarded
as a homomorphism Φ : G → Diff(M). By Proposition 9.1.5, its deriva-
tive at the identity TeΦ should be a Lie algebra homomorphism. From the
definition of infinitessimal generator, we see that

TeΦ · ξ = ξM .

Thus, 9.1.5 suggests that

[ξM , ηM ]Lie bracket = [ξ, η]M .

However, by Proposition 9.3.6,

[ξ, η]M = −[ξM , ηM ].

Thus,

[ξM , ηM ]Lie bracket = −[ξM , ηM ].

This suggests that the Lie algebra bracket on X(M) is minus the Jacobi–Lie
bracket .

Another way to arrive at the same conclusion is to use the method of
computing brackets in the table in §9.1. To do this, we first compute, ac-
cording to step 1, the inner automorphism to be

Iη(ϕ) = η ◦ ϕ ◦ η−1.

By step 2, we differentiate with respect to ϕ to compute the Ad map.
Letting

X =
d

dt

∣∣∣∣
t=0

ϕt,

where ϕt is a curve in Diff(M) with ϕ0 = Identity, we have
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Adη(X) = (TeIη)(X) = TeIη

[
d

dt

∣∣∣∣
t=0

ϕt

]
=

d

dt

∣∣∣∣
t=0

Iη(ϕt)

=
d

dt

∣∣∣∣
t=0

(η ◦ ϕt ◦ η−1) = Tη ◦X ◦ η−1 = η∗X.

Hence Adη(X) = η∗X. Thus, the adjoint action of Diff(M) on its Lie
algebra is just the push-forward operation on vector fields. Finally, as in
step 3, we compute the bracket by differentiating Adη(X) with respect to
η. But by the Lie derivative characterization of brackets and the fact that
push forward is the inverse of pull back, we arrive at the same conclusion.
In summary, either method suggests that:

The Lie algebra bracket on Diff(M) is minus the Jacobi–Lie
bracket of vector fields.

One can also say that the Jacobi–Lie bracket gives the right (as opposed
to left) Lie algebra structure on Diff(M).

If one restricts to the group of volume-preserving (or symplectic) diffeo-
morphisms, then the Lie bracket is again minus the Jacobi–Lie bracket on
the space of divergence-free (or locally Hamiltonian) vector fields.

Here are three examples of actions of Diff(M). Firstly, Diff(M) acts on
M by evaluation: the action Φ : Diff(M)×M →M is given by

Φ(ϕ, x) = ϕ(x).

Secondly, the calculations we did for Adη show that the adjoint action of
Diff(M) on its Lie algebra is given by push forward. Thirdly, if we identify
the dual space X(M)∗ with one-form densities by means of integration, then
the change of variables formula shows that the coadjoint action is given by
push forward of one-form densities.

Unitary Group of Hilbert Space. Another basic example of an infinite-
dimensional group is the unitary group U(H) of a complex Hilbert space
H. If G is a Lie group and ρ : G → U(H) is a group homomorphism, we
call ρ a unitary representation. In other words, ρ is an action of G on H
by unitary maps.

As with the diffeomorphism group, questions of smoothness regarding
U(H) need to be dealt with carefully and in this book we shall only give a
brief indication of what is involved. The reason for care is, for one thing,
because one ultimately is dealing with PDE’s rather than ODE’s and the
hypotheses made must be such that PDE’s are not excluded. For example,
for a unitary representation one assumes that for each ψ, ϕ ∈ H, the map

g 7→ 〈ψ, ρ(g)ϕ〉
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of G to C is continuous. In particular, for G = R one has the notion of a
continuous one-parameter group U(t) so that U(0) = identity and

U(t + s) = U(t) ◦ U(s).

Stone’s theorem says that in an appropriate sense we can write

U(t) = etA

where A is an (unbounded) skew-adjoint operator defined on a dense do-
main D(A) ⊂ H. See, for example, Abraham, Marsden and Ratiu [1988,
§7.4B] for the proof. Conversely each skew-adjoint operator defines a one
parameter subgroup. Thus, Stone’s theorem gives precise meaning to the
statement: the Lie algebra u(H) of U(H) consists of the skew adjoint op-
erators. The Lie bracket is the commutator, as long as one is careful with
domains.

If ρ is a unitary representation of a finite dimensional Lie group G on
H, then ρ(exp(tξ)) is a one-parameter subgroup of U(H), so Stone’s the-
orem guarantees that there is a map ξ 7→ A(ξ) associating a skew-adjoint
operator A(ξ) to each ξ ∈ g. Formally we have

[A(ξ), A(η)] = [ξ, η].

Results like this are aided by a theorem of Nelson [1959] guaranteeing
a dense subspace DG ⊂ H such that A(ξ) is well-defined on DG, A(ξ)
maps DG to DG, and for ψ ∈ DG, [exp tA(ξ)] is C∞ in t with derivative
at t = 0 given by A(ξ)ψ. This space is called an essential G-smooth
part of H and on DG the above commutator relation and the linearity
A(αξ + βη) = αA(ξ) + βA(η) become literally true. Moreover, we loose
little by using DG since A(ξ) is uniquely determined by what it is on DG.

We identify U(1) with the unit circle in C and each such complex number
determines an element of U(H) by multiplication. Thus, we regard U(1) ⊂
U(H). As such, it is a normal subgroup (in fact, elements of U(1) commute
with elements of U(H)), so the quotient is a group called the projective
unitary group of H. We write it as

U(PH) = U(H)/ U(1).

We write elements of U(PH) as [U ] regarded as an equivalence class of
U ∈ U(H). The group U(PH) acts on projective Hilbert space PH = H/C,
as in §5.3, by

[U ][ϕ] = [Uϕ].

One parameter subgroups of U(PH) are of the form [U(t)] for a one
parameter subgroup U(t) of U(H). This is a particularly simple case of the
general problem considered by Bargmann and Wigner of lifting projective
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representations, a topic we return to later. In any case, this means we can
identify the Lie algebra as

u(PH) = u(H)/iR,

where we identify the two skew adjoint operators A and A + λi, for λ real.
A projective representation of a group G is a homomorphism τ :

G→ U(PH); we require continuity of |〈ψ, τ(g)ϕ〉|, which is well defined for
[ψ], [ϕ] ∈ PH. There is an analogue of Nelson’s theorem that guarantees an
essential G-smooth part PDG of PH with properties like those of DG.

Exercises

¦ Exercise 9.3-1. Let a Lie group G act linearly on a vector space V .
Define a group structure on G× V by

(g1, v1) · (g2, v2) = (g1g2, g1v2 + v1).

Show that this makes G× V into a Lie group—it is called the semidirect
product and is denoted GsV . Determine its Lie algebra gsV .

¦ Exercise 9.3-2.

(a) Show that the Euclidean group E(3) can be written as O(3)sR3 in
the sense of the preceding exercise.

(b) Show that E(3) is isomorphic to the group of (4× 4)-matrices of the
form [

A b
0 1

]
,

where A ∈ O(3) and b ∈ R3.

¦ Exercise 9.3-3. Show that the Galilean group is a semidirect product
G = (SO(3)sR3)sR4.

¦ Exercise 9.3-4. If G is a Lie group, show that TG is isomorphic (as a
Lie group) with Gs g (see Exercise 9.1-2).

¦ Exercise 9.3-5. In the Relative Darboux Theorem of Exercise 5.1-5,
assume that a compact Lie group G acts on P , that S is a G-invariant
submanifold and that both Ω0 and Ω1 are G-invariant. Conclude that the
diffeomorphism ϕ : U −→ ϕ(U) can be chosen to commute with the G-
action and that V , ϕ(U) can be chose to be a G-invariant.

¦ Exercise 9.3-6. Verify, using standard vector notation, the four “deriva-
tive of curves” formulae for SO(3).
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¦ Exercise 9.3-7. Prove the following generalization of the Duflo–Vergne
Theorem due to Guillemin and Sternberg [1984]. Let S be an infinitessi-
mally invariant submanifold of g∗, that is, ad∗ξ µ ∈ S, whenever µ ∈ S and
ξ ∈ g. Let r = min{dim gµ|µ ∈ S}. Then dim gµ = r implies

[gµ, gµ] ⊂ (TµS)0 = {ξ ∈ g | 〈u, ξ〉 = 0, for all u ∈ TµS}.

In particular gµ/(TµS)0 is abelian. (The Duflo–Vergne Theorem is the case
for which S = g∗.)

¦ Exercise 9.3-8.

(a) Prove the polar decomposition in SL(n,C): every matrix A ∈ SL(n,C)
can be uniquely written as

A = KP = QK,

where K ∈ SU(n) and Q, P are Hermitian positive definite.

(b) (Requires some topology.) Use (a) and simple connectedness of SU(n)
to show that SL(n,C) is also simply connected.
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