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Hamiltonian Systems on Linear
Symplectic Spaces

A natural arena for Hamiltonian mechanics is a symplectic or Poisson mani-
fold. The first chapters concentrate on the symplectic case while Chapter 10
introduces the Poisson case. The symplectic context focuses on the sym-
plectic two-form Y dq® A dp; and its infinite-dimensional analogues, while
the Poisson context looks at the Poisson bracket as the fundamental ob-
ject. To facilitate the understanding of a number of points, we begin this
chapter with the theory in linear spaces. This linear setting is already ad-
equate for a number of interesting examples such as the wave equation
and Schrodinger’s equation. Later in Chapter 4 we make the transition
to manifolds and in Chapters 7 and 8 we study the basics of Lagrangian
mechanics.

2.1 Introduction

To motivate the introduction of symplectic geometry in mechanics, we
briefly recall from §1.1 the classical transition from Newton’s second law to
the Lagrange and Hamilton equations. Newton’s Second Law for a parti-
cle moving in Euclidean three-space R3, under the influence of a potential
energy V(q), is

F = ma, (2.1.1)

where q € R3, F(q) = —VV/(q) is the force, m is the mass of the particle,
and a = d?q/dt? is the acceleration (assuming we start in a postulated
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privileged coordinate frame called an inertial frame).! The potential en-
ergy V is introduced through the notion of work and the assumption that
the force field is conservative. The introduction of the kinetic energy
2
1
K=-m|—
2" || dt
is through the power, or rate of work equation:

dK .o .
E _m<qaq> - <q7F>7

where (,) denotes the inner product on R3.
The Lagrangian is defined by

L(¢',q") = 4l = V(@) (2.1.2)

and one checks by direct calculation that Newton’s second law is equivalent
to the Fuler—Lagrange equations:

d oL 0L
dt d¢t  o¢t
which are second-order differential equations in ¢°; the equations (2.1.3) are
worthy of independent study for a general L since they are the equations
for stationary values of the action integral:
12

6| L(¢'¢")dt=0 (2.1.4)

ty

dq

(2.1.3)

as will be detailed later. These variational principles play a fundamental
role throughout mechanics—both in particle mechanics and field theory.
It is easily verified that dE/dt = 0, where E is the total energy:

1.
E=m|dl* +V(a).

Lagrange and Hamilton observed that it is convenient to introduce the
momentum p; = mgq" and rewrite E as a function of p; and ¢* by letting

_ Il

H(q,p) o

+V(aq), (2.1.5)

for then Newton’s second law is equivalent to Hamilton’s canonical

equations
. O0H OH
= p = — e 2.1.6
¢=5, P o7 (2.1.6)

which is a first-order system in (q, p)-space, or phase space.

INewton and subsequent workers in mechanics thought of this inertial frame as one
“fixed relative to the distant stars.” While this raises serious questions about what this
could really mean mathematically or physically, it remains a good starting point. Deeper
insight is found in Chapter 8 and in courses in general relativity.
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2.1 Introduction 63

Matrix Notation. For a deeper understanding of Hamilton’s equations,
we recall some matrix notation (see Abraham, Marsden, and Ratiu [1988],
85.1 for more details). Let E be a real vector space and E* its dual space.
Let eq,... , e, be a basis of F with the associated dual basis for E* denoted
el, ..., e"; that is, e’ is defined by

(e',ej) == e'(ej) = 5;-,

which equals 1 if i = j and 0 if i # j. Vectors v € E are written v = v'e;
(a sum on i is understood) and covectors a € E* as a = a;e’; v' and oy
are the components of v and « respectively.

If A: F — Fis a linear transformation, its matriz relative to bases
€1,...,e, of Eand f1,..., fm, of F is denoted A’, and is defined by

Ales) = Al f;, ie, [A)) = A, (2.1.7)

Thus, the columns of the matrix of A are A(ey), ... , A(e,); the upper index
is the row index and the lower index is the column index. For other linear
transformations, we place the indices in their corresponding places. For
example, if A : E* — F is a linear transformation, its matrix A% satisfies
A(e?) = A" f;, that is, [A(a)]' = A¥q;.

If B: E x F— Ris a bilinear form, its matriz B;; is defined by

Bi; = Blei, fj); ie., B(v,w)=v"Bjw’. (2.1.8)
Define the associated linear map B” : E — F* by
B’ (v)(w) = B(v, w)

and observe that B’(e;) = B, f7. Since B’(e;) is the ith column of the
matrix representing the linear map B’, it follows that the matriz of B® in
the bases e1,... e, f ..., f™ is the transpose of B;; that is,

[B");; = Bij. (2.1.9)

Let Z denote the vector space of (¢,p)’s and write z = (q,p). Let the
coordinates ¢’, p; be collectively denoted by 2, I =1,...,2n. One reason
for the notation z is that if one thinks of z as a complex variable z = q+ip,
then Hamilton’s equations are equivalent to the following complex form of
Hamilton’s equations (see Exercise 2.1-1):

;= 21— 2.1.1
b= —2i— (2.1.10)

Symplectic and Poisson Structures. We can view Hamilton’s equa-
tions (2.1.6) as follows. Think of the operation

OH OH OH OH
dH(z) = (%%) - (apxaqi)
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which forms a vector field Xy, called the Hamiltonian vector field,
from the differential of H, as teh composition of the linear map

R:Z"—Z
with the differntial dH(z) of H. The matrix of R is

[RAP] = [ ?1 (1) } =7, (2.1.12)

where we write J for the specific matrix (2.1.12) sometimes called the sym-
plectic matriz. Thus,

Xu(z)=R-dH(2) (2.1.13)
or, if the components of X are denoted X!, I =1,...,2n,
OH
I _ plJ . _

where VH is the naive gradient of H; that is, the row vector dH but
regarded as a column vector.

Let B(a, 8) = (a, R(3)) be the bilinear form associated to R, where ()
denotes the canonical pairing between Z* and Z. One calls either the bilin-
ear form B or its associated linear map R, the Poisson structure. The
classical Poisson bracket (consistent with what we defined in Chapter 1)
is defined by

{F,G} = B(dF,dG) = dF - JVG. (2.1.15)

The symplectic structure ) is the bilinear form associated to R™! :
Z — Z*, that is, Q(v,w) = <R_1(U),’LU> or, equivalently, Q° = R~!. The
matrix of 2 is J in the sense that

Qv,w) = v Jw. (2.1.16)

To unify notation we shall sometimes write

Q  for the symplectic form, ZxZ—R with matrix J,
2  for the associated linear map, A with matrix J7,
QF  for the inverse map (Q°)"' =R, Z* —Z with matrix J,
B for the Poisson form, Z* x Z* - R with matrix J .

Hamilton’s equations may be written
5= Xpy(z) = Q' dH(2). (2.1.17)
Multiplying both sides by Q°, we get
DXy (2) = dH(2). (2.1.18)

......................... 13 January 1998—12h06 ............cccoiiiiiinan.



2.2 Symplectic Forms on Vector Spaces 65

In terms of the symplectic form, (2.1.18) reads
QU Xp(z),v)=dH(z) v (2.1.19)

for all z,v € Z.

Problems such as rigid body dynamics, quantum mechanics as a Hamil-
tonian system, and the motion of a particle in a rotating reference frame
motivate the need to generalize these concepts. We shall do this in sub-
sequent chapters and deal with both symplectic and Poisson structures in
due course.

Exercises

Exercise 2.1-1. Write z = ¢ + ip and show that Hamilton’s equations
are equivalent to

Z=—20——.

10)
Give a plausible definition of the right-hand side as part of your answer.

Exercise 2.1-2. Write the harmonic oscillator mZ + kx = 0 in the form
of Euler-Lagrange equations, as Hamilton’s equations, and finally, in the
complex form (2.1.10).

Exercise 2.1-3. Repeat Exercise 2.1-2 for m& + kx + ax® = 0.

2.2 Symplectic Forms on Vector Spaces

Let Z be a real Banach space, possibly infinite dimensional, and let €2 :
Z x Z — R be a continuous bilinear form on Z. The form (2 is said to
be nondegenerate (or weakly nondegenerate) if Q(z1,z2) = 0 for all
zo € Z implies z; = 0. As in §2.1, the induced continuous linear mapping
O : Z — Z* is defined by

QD (21)(22) = Q(21, 22). (2.2.1)

Nondegeneracy of  is equivalent to injectivity of Q°; that is, to the
condition “Q"(z) = 0 implies z = 0.” The form € is said to be strongly
nondegenerate if O’ is an isomorphism, that is, {” is onto as well as being
injective. The open mapping theorem guarantees that if Z is a Banach space
and Q° is one-to-one and onto, then its inverse is continuous. In most of
the infinite-dimensional examples discussed in this book € will be only
(weakly) nondegenerate.

A linear map between finite-dimensional spaces of the same dimension
is one-to-one if and only if it is onto. Hence, when Z is finite dimensional,
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66 2.2 Symplectic Forms on Vector Spaces

weak nondegeneracy and strong nondegeneracy are equivalent. If Z is finite
dimensional, the matrix elements of  relative to a basis {e;} are defined
by

Qry = Qer, ey).

If {e”} denotes the basis for Z* that is dual to {e;}, that is, (e’ e;) = 67
and if we write z = zle; and w = w'ey, then

Qz,w) = 2IQr ;0w (sum over I,.J).

Since the matrix of Q” relative to the bases {e;} and {e’} equals the
transpose of the matrix of Q relative to {e;}; that is (2°);; = Qr 7, nonde-
generacy is equivalent to det[€2; ;] 0. In particular, Z is even dimensional,
since the determinant of a skew-symmetric matrix with an odd number of
rows (and columns) is zero.

Definition 2.2.1. A symplectic form § on a vector space Z is a non-
degenerate skew-symmetric bilinear form on Z. The pair (Z,) is called a
symplectic vector space. If Q) is strongly nondegenerate, (Z,Q) is called
a strong symplectic vector space.

Examples

We now develop some basic examples of symplectic forms.

(a) Canonical Forms. Let W be a vector space, and let Z = W x W*.
Define the canonical symplectic form Q on Z by

Q((wy, 1), (wa, az)) = az(wy) — ay(ws), (2.2.2)

where wq,ws € W and aq,ay € W,

More generally, let W and W' be two vector spaces in duality, that is,
there is a weakly nondegenerate pairing (,) : W/ x W — R. Then on
W x W',

Q((w1, 1), (we, a2)) = (g, w1) — (a1, ws) (2.2.3)
is a weak symplectic form. ¢

(b) The Space of Functions. Let F(R?) be the space of smooth func-
tions ¢ : R® — R, and let Den,.(R?) be the space of smooth densities on
R3 with compact support. We write a density 7 € Den.(R3) as a function
7' € F(R?) with compact support times the volume element d3x on R?
as m = 7' d3z. The spaces F and Den, are in weak nondegenerate dual-
ity by the pairing (¢, 7) = [ pn’ d*z. Therefore, from (2.2.3), we get the
symplectic form © on the vector space Z = F(R?) x Den,(R?):

Q(pr,m), (102, ™)) :/

s P17 — /]R3 ©aTy. (224)
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2.2 Symplectic Forms on Vector Spaces 67
We choose densities with compact support so that the integrals in this
formula will be finite. Other choices of spaces could be used as well. ¢

(c) Finite-Dimensional Canonical Form. Suppose that W is a real
vector space of dimension n. Let {e;} be a basis of W, and let {e‘} be the
dual basis of W*. With Z = W x W* and defining 2 : Z x Z — R as in
(2.2.2), one computes that the matrix of €2 in the basis

{(e1,0),...,(en,0),(0,e"),...,(0,e™)}
is
0o 1
J= [ 1o } , (2.2.5)
where 1 and 0 are the n x n identity and zero matrices. ¢

(d) Symplectic Form Associated to an Inner Product Space. If
(W, (,)) is a real inner product space, W is in duality with itself, so we
obtain a symplectic form on Z = W x W from (2.2.3):

Q(w1, w2), (21, 22)) = (22, w1) — (21, w2) - (2.2.6)
As a special case of (2.2.6), let W = R3 with the usual inner product

3
(q,v) :q~v=Zqivi’.
i=1

The corresponding symplectic form on RS is given by

Q((ai, v1), (az,v2)) = va - a1 — vi - qa, (2.2.7)

where q1,q2, V1, ve € R3. This coincides with 2 defined in Example (c) for
W = R3, provided R? is identified with (R3)*. ¢

Bringing €2 to canonical form using elementary linear algebra results
in the following statement. If (Z,Q) is a p-dimensional symplectic vector
space, then p is even. Furthermore, Z is isomorphic to W x W* and there is
a basis of W in which the matriz of Q is J. Such a basis is called canonical,
as are the corresponding coordinates. See Exercise 2.2-3.

(e) Symplectic Form on C". Write elements of complex n-space C™

as n-tuples z = (z1,..., z,) of complex numbers. The Hermitian inner
product is
n n n
(zow) =z = > (wju; +y;0;) +i Y (ujy; — vjay),
j=1 j=1 j=1

where z; = z; + ty; and w; = u; + 4v;. Thus, Re (z,w) is the real inner
product and —Im (z, w) is the symplectic form if C™ is identified with R™ x

......................... 13 January 1998—12h06 ............cccoiiiiiinan.
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(f) Quantum Mechanical Symplectic Form. The following symplec-

tic vector space arises in quantum mechanics, as we shall explain in Chap-

ter 3. Recall that a Hermitian inner product (,) : H xH — C on a

complex Hilbert space H is linear in its first argument, antilinear in its sec-

ond, and (1, 9) is the complex conjugate of (19, 1)1), where 91,19 € H.
Set

Q(¢17w2) = —2hIm <1/)177/)2> ’

where £ is Planck’s constant. One checks that {2 is a strong symplectic
form on H. Let H be the complexification of a real Hilbert space H, so it
is identified with H x H, and the inner product is given by

((ur,uz), (v1,v2)) = (u1,v1) + (uz,v2) +i({ug, v1) — (u1,v2)).

This form coincides with 27 times that in (2.2.6). On the other hand, if we
embed H into H x H* via ¢ — (i1, 1)) then the restriction of # times the
canonical symplectic form (2.2.6) on H x H*, namely,

(1, 1), (P2, 2)) = IRe[(p2, Y1) — (@1, 92)],

coincides with € . ¢

Exercises

Exercise 2.2-1. Verify that the formula for the symplectic form for R2"
as a matrix, namely,
0o 1
=15

coincides with the definition of the symplectic form as the canonical form
on R?" regarded as the product R™ x (R™)*.

Exercise 2.2-2. Let (Z,Q) be a finite-dimensional symplectic vector space
and let V' C Z be a linear subspace. Assume that V' is symplectic; that is,
Q restricted to V' x V is nondegenerate. Let

Ve@={2¢€Z|Uzv)=0 forallveV}.
Show that V¢ is symplectic and Z =V & V.

Exercise 2.2-3. Find a canonical basis for a symplectic form €2 on Z as
follows. Let e; € Z,e1 # 0. Find es € Z with Q(e1, e3) # 0. By rescaling
e, assume 2(e1,e2) = 1. Let V be the span of e; and es. Apply Exercise
2.2-2 and repeat this construction on V.

Exercise 2.2-4. Let (Z,Q) be a finite dimensional symplectic vector
space and V' C Z a subspace. Define V¥ as in Exercise 2.2-2. Show that
Z/V and V* are isomorphic vector spaces.

......................... 13 January 1998—12h06 ............cccoiiiiiinan.



2.3 Canonical Transformations or Symplectic Maps 69

2.3 Canonical Transformations or
Symplectic Maps

To motivate the definition of symplectic maps (synonymous with canonical
transformations), start with Hamilton’s equations:

_O0H . 9H

-7

q = ap; Di = “og (2.3.1)
and a transformation ¢ : Z — Z of phase space to itself. Write
(@,0) = ¢(a,p)
that is,
Z = @(2). (2.3.2)
Assume z(t) = (q(t), p(t)) satisfies Hamilton’s equations, that is,
2(t) = Xpg(2(t)) = QFdH(2(t)), (2.3.3)

where Qf : Z — Z* is the linear map with matrix J whose entries we denote
B7K . By the chain rule, Z = ¢(z) satisfies

I
- g%z"} = Al (2.3.4)

(sum on J). Substituting (2.3.3) into (2.3.4), employing coordinate nota-
tion, and using the chain rule implies

- AIJBJKi—i = AIJBJKALK%. (2.3.5)
Thus, the equations (2.3.5) are Hamiltonian if and only if
AL BIK AL — BIL, (2.3.6)
or in matrix notation
AJAT =]. (2.3.7)
In terms of composition of linear maps, (2.3.6) means
AoQf o AT = QF, (2.3.8)

since the matrix of Qf in canonical coordinates is J (see §2.1). A transfor-
mation satisfying (2.3.6) is called a canonical transformation, a sym-
plectic transformation, or a Poisson transformation?.

2In Chapter 10, where Poisson structures can be different from symplectic ones, we
will see that (2.3.8) generalizes to the Poisson context.
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Taking determinants of (2.3.7), shows that det A = £1 and in particular
that A is invertible; taking the inverse of (2.3.8) gives

(AT) To oAt =@,
that is,
AT o QP o A=, (2.3.9)
which has the matrix form
ATJA=] (2.3.10)

since the matrix of €’ in canonical coordinates is —J (see §2.1). Note that
(2.3.7) and (2.3.10) are equivalent (the inverse of one gives the other). As
bilinear forms, (2.3.9) reads

Q(D(z) - 21, Dp(2) - 22) = 21, 22), (2.3.11)

where Dy is the derivative of ¢ (the Jacobian matrix in finite dimensions).
With (2.3.11) as a guideline, we write the general condition for map to be
symplectic.

Definition 2.3.1. If (Z,Q) and (Y,Z) are symplectic vector spaces, a
smooth map f: Z — Y is called symplectic or canonical if it preserves
the symplectic forms, that is, if

E(Df(2)-z1,Df(z) - z22) = Q(21, 22) (2.3.12)

for all z,z1,20 € Z.

Pull Back Notation

We introduce a convenient notation for these sorts of transformations.

©*f  pull back of a function: o*f = f o .
©«g  push forward of a function: ¢.g=go p L.

w«X  push forward of a vector field X by ¢:
(22 X)(p(2)) = Dyp(2) - X (2);

in components,

A’
*X I - —XJ.
(0 X) 927
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©*Y  pull back of a vector field Y by ¢: ¢*Y = (¢ 1).Y

©0*Q  pull back of a bilinear form  on Z gives a bilinear
form ¢*Q2 depending on the point z € Z:

(7Q2) (21, 22) = QUDy(2) - 21, Dp(2) - 22);
in components,

- 8(,0K 8<pL

(SO*Q)IJ = WW KL;

push forward a bilinear form = by ¢ equals pull back

S
*
[1]

by the inverse: p.= = (¢~ 1)*E.

In this pull-back notation, (2.3.12) reads (f*©), — Q,, or f*0 = Q for
short.

The Symplectic Group. It is simple to verify that if (Z,Q) is a finite-
dimensional symplectic vector space, the set of all linear symplectic map-
pings T : Z — Z forms a group under composition. It is called the sym-
plectic group and is denoted by Sp(Z,2). As we have seen, in a canonical
basis, a matrix A is symplectic if and only if

ATJA =], (2.3.13)

where A7 is the transpose of A. For Z = W x W* and a canonical basis,
if A has the matrix

A, A
A= | faa “ap } , 2.3.14
|: qu APP ( )

then one checks (Exercise 2.4-2) that (2.3.13) is equivalent to either of the
two conditions:

(1) AgAl, and Ay, Al are symmetric and AggAl — Agp Al =1; or
(2) AT Ayq and AT A, are symmetric and AT A, — AL A, =1

In infinite dimensions Sp(Z, ) is, by definition, the set of elements of
GL(Z) (the group of invertible bounded linear operators of Z to Z ) that
leave () fixed.

Symplectic Orthogonal Complements. If (Z,Q) is a (weak) sym-
plectic space and E and F are subspaces of Z, we define B = {z € 7 |
Q(z,e) = 0 for all e € E}, called the symplectic orthogonal comple-
ment of E. We leave it to the reader to check that

(i) E% is closed;
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(ii) E C F implies F* ¢ E% ;

(iii) EYNF9 = (E+ F)%,

(iv) if Z is finite dimensional, then dim E+dim E** = dim Z (to show this,
use the fact that E* = ker(i* 0 Q°), where i : E — Z is the inclusion

and * 1 Z* — E* is its dual, i*(a) = « o, which is surjective
alternatively, use Exercise 2.2-4);

(v) if Z is finite dimensional, E* = E (this is also true in infinite di-
mensions if E is closed); and

(vi) if E and F are closed, then (E N F)? = E + F9 (to prove this use
iii and v).

Exercises

Exercise 2.3-1. Show that a transformation ¢ : R?" — R?" is symplec-
tic in the sense that its derivative matrix A = D(z) satisfies the condition
ATJA = J if and only if the condition

Q(Az1, Az) = Qz1, 22)

holds for all z1, 2o € R?".

Exercise 2.3-2. Let Z =W x W* let A: Z — Z and, using canonical
coordinates, write the matrix of A as

A= { Agq Agp } _
pq  App
Show that A being symplectic is equivalent to either of the two conditions:
(i) AggAL, and Ap, AT are symmetric and Ay AL — A, AT =1; or
(i) AL Agq and AT A, are symmetric and Al A,, — AT A,, =1. (Here,
1 is the n x n identity.)

Exercise 2.3-3. Let f be a given function of q = (¢}, ¢?%, ... ,¢"). Define
the map ¢ : R?® — R by ¢(q,p) = (q,p + df(q)). Show that ¢ is a
canonical (symplectic) transformation.

Exercise 2.3-4.

(a) Let A € GL(n,R) be an invertible linear transformation. Show that
the map ¢ : R?" — R2" given by (q,p) — (Aq, (A~1)Tp) is a canon-
ical transformation.

(b) If R is a rotation in R3, show that the map (q,p) — (Rq, Rp) is a
canonical transformation.
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o Exercise 2.3-5. Let (Z,Q) be a finite dimensional symplectic vector
space. A subspace E C Z is called isotropic, coisotroipic, and La-
grangian if E C E®, E® C E, and E = E® respectively. Note that,
FE is Lagrangian if and only if it is isotropic and coisotropic at the same
time. Show that:

(a) An isotropic (coisotropic) subspace E is Lagrangian if and only if
dim E = dim E®. In this case necessarily 2dim E = dim Z.

(b) An isotropic (coisotropic) subspace is Lagrangian if and only if it is
a maximal isotropic (minimal coisotropic) subspace.

(¢) Every isotropic (coisotropic) subspace is contained in (contains) a
Lagrangian subspace.

2.4 The General Hamilton Equations

The concrete form of Hamilton’s equations we have already encountered
is a special case of a construction on symplectic spaces. Here, we discuss
this formulation for systems whose phase space is linear; in subsequent
sections we will generalize the setting to phase spaces which are symplectic
manifolds and in Chapter 10 to spaces where only a Poisson bracket is
given. These generalizations will all be important in our study of specific
examples.

Definition 2.4.1. Let (Z,Q) be a symplectic vector space. A vector field
X : Z — Z is called Hamiltonian if

(X (2)) = dH(z), (2.4.1)

for all z € Z, for some C' function H : Z — R. Here dH(z) = DH(z) is
alternative notation for the derivative of H. If such an H exists, we write
X = Xy and call H a Hamiltonian function, or energy function for
the vector field X .

In a number of important examples, especially infinite-dimensional ones,
H need not be defined on all of Z. We shall briefly discuss some of the
technicalities involved in §3.3.

If Z is finite dimensional, nondegeneracy of Q implies that Q° : Z — Z* is
an isomorphism, which guarantees that Xy exists for any given function H.
However, if Z is infinite dimensional and 2 is only weakly nondegenerate,
we do not know a priori that Xy exists for a given H. If it does exist, it
is unique since €° is one-to-one.

The set of Hamiltonian vector fields on Z is denoted Xgam (Z), or simply
XHam- Thus Xy € Xygam is the vector field determined by the condition

QA Xp(z),6z) =dH(z) -6z forall 2,6z € Z. (2.4.2)
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If X is a vector field, the interior product ix) is defined to be the
dual vector (also called, a one form) given at a point z € Z as follows:

(ix), € 2%, (ixQ).(v) == AUX(2),v),
for all v € Z. Then condition (2.4.1) or (2.4.2) may be written as
ixQ=dH. (2.4.3)

To express H in terms of Xz and Q, we integrate the identity dH (tz)-z =
W Xp(tz),z) from t = 0 to t = 1. The fundamental theorem of calculus
gives

1 P 1
H(z)—H(O):/O dfil(tt )dt:/o dH(t2) - = dt

- /1 QX (tz), 2) dt. (2.4.4)
0

Let us now abstract the calculation we did in arriving at (2.3.7).

Proposition 2.4.2. Let (Z,Q) and (Y, Z) be symplectic vector spaces and
f:Z =Y a diffeomorphism. Then f is a symplectic transformation if and
only if for all Hamiltonian vector fields Xy on'Y', we have f. Xpor = Xu;
that is,

Df(z) - Xuos(2) = Xu(f(2)). (2.4.5)
Proof. Note that for v € Z,
QU Xnop(2),v) =d(Ho f)(z) -v=dH(f(2))-Df(2) v
=E(Xu(f(2)),Df(z2) - v). (2.4.6)
If f is symplectic, then
EDf(2) - Xnof(2), Df(2) - v) = UXpop(2),v)

and thus by nondegeneracy of Z and the fact that Df(z) - v is an arbi-
trary element of Y (because f is a diffeomorphism and hence D f(2) is an
ismorphism), (2.4.5) holds. Conversely, if (2.4.5) holds, then (2.4.6) implies
that
E(Df(2) - Xbof(2),Df(2) - v) = UXHos(2),v)

for any v € Z and any C! map H : Y — R. However, Xps(2) equals an
arbitrary element w € Z for a correct choice of the Hamiltonian function
H, namely, (H o f)(z) = Q(w, z). Thus, f is symplectic. |

Definition 2.4.3. Hamilton’s equations for H is the system of differ-
ential equations defined by Xy. Letting ¢ : R — Z be a curve, they are the
equations

dc(t)

— = Xn(e(®). (24.7)
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The Classical Hamilton Equations. We now relate the abstract form
(2.4.7) to the classical form of Hamilton’s equations. In the following, an
n-tuple (¢!, ... ,q") will be denoted simply by (¢*), etc.

Proposition 2.4.4. Suppose that (Z,Q) is a 2n-dimensional symplectic
vector space, and let (¢*,p;) = (¢*,...,q",p1,...,pn) denote canonical
coordinates, with respect to which Q0 has matriz J. Then in this coordinate
system, X : Z — Z 1is given by
OH OH
Xgy=(—,—=—)=J-VH. 2.4.8

. <0pi 8(1’) (248)

Thus, Hamilton’s equations in canonical coordinates are

d_qi o OH dpi - _8H
dt — Op;’ dt  Ogt
More generally, if Z =V xV' (-} : VXV’ — R is a weakly nondegenerate
pairing, and Q((e1, 1), (e2,a2)) = (a2, e1) — (a1, e2), then

oH 6H>

Xale,a) = (E"%

where 6H/éa € V and §H/be € V' are the partial functional deriva-
tives defined by

(2.4.9)

(2.4.10)

DoH(e,q) 3 = <5, %> (2.4.11)

for any B € V' and similarly for 6H/ée; in (2.4.10) it is assumed that the
functional derivatives exist.

Proof. If (f,8) € V x V', then

(55 ) ) = {050) +(509)
=DyH(e,a)- 8+ D1H(e,a) - f
= (dH(e,a), (£, 5)) u

Proposition 2.4.5. (Conservation of Energy) Let c(t) be an integral
curve of Xg. Then H(c(t)) is constant in t. If @ denotes the flow of Xy,
that is, p(z) is the solution of (2.4.7) with initial conditions z € Z, then
Hop,=H.
Proof. By the chain rule,

L H(e(t) = AH(c(t) - Se(t) = @ X(elt)), et

dt - at I

= Q(Xp(c(t), Xu(c(t)) =0,

where the final equality follows from the skew-symmetry of €. ]
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Exercises

Exercise 2.4-1. Let the skew-symmetric bilinear form € on R?” have
the matrix

B 1

-1 0|’

where B = [B;;] is a skew-symmetric n x n matrix, and 1 is the identity
matrix.

(a) Show that Q is nondegenerate and hence a symplectic form on R?".

(b) Show that Hamilton’s equations with respect to €2 are, in standard
coordinates,

dq’ _OH  dp; OH O0H

o o @ - og  Digp

2.5 When Are Equations Hamiltonian?
Having seen how to derive Hamilton’s equations on (Z,Q) given H, it is
natural to consider the converse: when are a given set of equations

d
d_i = X(z), where X :Z — Zis a vector field, (2.5.1)

Hamilton’s equations for some H? If X is linear, the answer is given by the
following.

Proposition 2.5.1. Let the vector field A : Z — Z be linear. Then A is
Hamiltonian if and only if A is Q-skew; that is,

Q(Azy1,29) = —Q(21, Azo)
for all z1, zo € Z. Furthermore, in this case one can take H(z) = 3Q(Az, z).
Proof. Differentiating the defining relation
QU Xpu(z),v)=dH(z) v (2.5.2)
with respect to z in the direction w and using bilinearity of €2, one gets
QDXg(2) - u,v) = D*H(2)(v,u). (2.5.3)
From this and the symmetry of the second partial derivatives, we get

QDX (2) - u,v) = D*H(2)(u,v) = ADXg(2) - v, )
= —Q(u,DXg(z) - v). (2.5.4)
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If A= Xy for some H, then DXy (z) = A, and (2.5.4) becomes Q(Au,v) =
—Q(u, Av); hence A is Q-skew.

Conversely, suppose that A is Q-skew. Defining H(z) = %Q(Az,z), we
claim that A = Xp. Indeed,

1 1
dH(z) -u= EQ(AU’ z) + §Q<AZ’ u)
1 1
= —§Q(u, Az) + §Q(Az,u)

1 1
= §Q(Az,u) + §Q(Az,u) = Q(Az,u). |

In canonical coordinates, where Q has matrix J, -skewness of A is
equivalent to symmetry of the marix JA; that is, JA + ATJ = 0. The
vector space of all linear transformations of Z satisfying this condition is
denoted by sp(Z, ) and its elements are called infinitesimal symplectic
transformations. In canonical coordinates, if Z =W x W* and if A has
the matrix

A, A
A= | G “ap } , 2.5.5
|: qu App ( )

then one checks that A is infinitesimally symplectic if and only if Ay, and
Apq are both symmetric and AL, + App, = 0. Compare with Exercise 2.5-1.

In the complex linear case, we use Example (f) in §2.3 (2h times the
negative imaginary part of a Hermitian inner product (,) is the symplectic
form) to arrive at the following.

Corollary 2.5.2. Let H be a complex Hilbert space with Hermitian inner
product {,) and let Q(¢P1,102) = —2h Im (¢1,12). Let A : H — H be a
complex linear operator. There exists an H : H — R such that A = Xy if
and only if 1A is symmetric or, equivalently, satisfies

(1AY1, o) = (Y1, ideps) . (2.5.6)

In this case, H may be taken to be H(vp) = h(iAy,¢). We let H,p, =
ithA and thus Hamilton’s equations ¢ = Ay becomes the Schréodinger
equation®:

0
zha—f: op- (2.5.7)

3Strictly speaking, equation (2.5.6) is required to hold only on the domain of the
operator A, which need not be all of H. We shall ignore these issues for simplicity. This
example is continued in §2.6 and in §3.2.
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Proof. A is Q-skew if and only if Im (Aty,19) = —Im (¢, Ahs) for
all ¥1,12 € H. Replacing everywhere 11 by 417 and using the relation
Im(iz) = Re 2, this is equivalent to Re (A1, 1) = —Re (11, At)a). Since

<Z-A’(/}17 1/)2> =—Im <A¢17 ¢2> + 1 Re <A¢17 ¢2> 3 (258)
and

(1,1Arpa) = +Im (1, Aa) — i Re (1, Ara) (2.5.9)

we see that ()-skewness of A is equivalent to A being symmetric. Finally

. . 1
and the corollary follows from Proposition 2.5.1. |

For nonlinear differential equations, the analogue of Proposition 2.5.1 is
the following.

Proposition 2.5.3. Let X : Z — Z be a (smooth) vector field on a
symplectic vector space (Z,Q). Then X = Xy for some H : Z — R if and
only if DX (z) is Q-skew for all z.

Proof. We have seen the “only if” part in the proof of Proposition 2.5.1.
Conversely, if DX (z) is Q-skew, define?

H(z) = /0 (X (t2). 2)di + constant: (2.5.10)
we claim that X — Xy Indeed,
dH(2) v = /0 DX (12) - 10, 2) + QX (12),0)] i
- /Ol[Q(tDX(tz) 2 0) + QX (t2), 0)] dt
—q ( /O DX (1) - 2 + X (62)] db, v>
o (/01 %[tX(tz)] dt,v) — Q(X(2),0). n

Using the straightening out theorem (see, for example, Abraham, Mars-
den, and Ratiu [1988], Section 4.1) it is easy to see that on an even-
dimensional manifold any vector field is locally Hamiltonian near points

4Looking ahead to Chapter 4 on differential forms, one can check that (2.5.10) for H
is reproduced by the proof of the Poincaré lemma applied to the one-form ix 2. That
DX (z) is Q-skew is equivalent to d(ix) = 0.
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where it is non-zero, relative to some symplectic form. However, it is not
so simple to get a general criterion of this sort that is global, covering
singular points as well.

An interesting characterization of Hamiltonian vector fields involves the
Cayley transform. Let (Z, Q) be a symplectic vector space and A: Z — Z a
linear transformation such that I — A is invertible. Then A is Hamiltonian
iff its Cayley transform C = (I + A)(I — A)~! is symplectic. See Ex-
ercise 2.5-2. For applications, see Laub and Meyer [1974], Paneitz [1981],
Feng [1986], and Austin and Krishnaprasad [1993]. The Cayley transform
is useful in some Hamiltonian numerical algorithms, as this last reference
and Marsden [1992] shows.

Exercises

Exercise 2.5-1. Let Z =W x W™* and use a canonical basis to write the
matrix of the linear map A : Z — Z as

A:{Aqq qu]

Pq pp

Show that A is infinitesimally symplectic, that is, JA+A”J = 0 if and only
if Agp and Apq are both symmetric and qu +A,,=0.

Exercise 2.5-2. Let (Z,) be a symplectic vector space. Let A: Z — Z
be a linear map and assume that (I — A) is invertible. Show that A is
Hamiltonian iff its Cayley transform

(I+A)(I— A"

is symplectic. Give an example of a linear Hamiltonian vector field such
that (I — A) is not invertible.

Exercise 2.5-3. Suppose that (Z,Q) is a finite-dimensional symplectic
vector space and let ¢ : Z — Z be a linear symplectic map. If X is an eigen-
value of multiplicity k, then so is 1/\. Prove this using the characteristic
polynomial of ¢.

Exercise 2.5-4. Suppose that (Z,) is a finite-dimensional symplectic
vector space and let A : Z — Z be a Hamiltonian vector field. Show that
the generalized kernel of A defined to be the set {z € Z | A¥z = 0, for
some integer k > 1}, is a symplectic subspace.

2.6 Hamiltonian Flows

This subsection discusses flows of Hamiltonian vector fields a little further.
The next subsection gives the abstract definition of the Poisson bracket,
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relates it to the classical definitions, and then shows how it may be used in
describing the dynamics. Later on, Poisson brackets will play an increas-
ingly important role.

Let Xz be a Hamiltonian vector field on a symplectic vector space (Z, )
with Hamiltonian H : Z — R. The flow of Xy is the collection of maps
¢ Z — Z satistying

d

Soulz) = Xn(pu(2) (26.1)

for each z € Z and real t. Here and in the following, all statements con-
cerning the map ¢; : Z — Z are to be considered only for those z and ¢
such that ¢;(z) is defined, as determined by differential equations theory.

Linear Flows. First consider the case in which A is a (bounded) linear
vector field. The flow of A may be written as ¢, = e*4; that is, the solution
of dz/dt = Az with initial condition z is given by z(t) = ¢;(20) = €' 2.

Proposition 2.6.1. The flow p; of a linear vector field A : Z — Z con-
sists of (linear) canonical transformations if and only if A is Hamiltonian.

Proof. For all u,v € Z we have

L)) = Loau(u),uv)
d

— 0 (et a)) +9 (). o)
= Q(Api(u), @i (v)) + Qe (u), Api(v)).

Therefore, A is 2-skew, that is, A is Hamiltonian, if and only if each ¢, is
a linear canonical transformation. |

Nonlinear Flows. For nonlinear flows, there is a corresponding result.

Proposition 2.6.2. The flow ¢; of a (nonlinear) Hamiltonian vector
field X g consists of canonical transformations. Conversely, if the flow of a
vector field X consists of canonical transformations, then it is Hamiltonian.

Proof. Let ¢; be the flow of a vector field X. By (2.6.1) and the chain

rule:

d
dt

d

D¢i(2)0] =D | Gn(2)| -0 = DX () Dy (2) o)

Using this, we get

L ODpi(2) - u.Dir(2) - ) = ADX (p(2) - Dipu(2) - ul, Di(2) -v)

dt
+ QDei(2) - u, DX (pr(2)) - [Dpe(z) - v]).
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If X = Xy, then DXy (¢:(2)) is Q-skew by Proposition 2.5.3, so,
Q(Dps(z) - u, Dpy(z) - v) = constant.

At ¢ = 0 this equals Q(u, v), so p;Q = Q. Conversely, if ¢, is canonical, this
calculation shows that DX (¢;(2)) is Q-skew, whence by Proposition 2.5.3,
X = Xy for some H. [ |

Later on we give another proof of Proposition 2.6.2 using differential
forms.

Example: Schrodinger Equation

Proposition 2.6.3. Let A: H — H be a complex linear map on a com-
plex Hilbert space H. The flow ¢y of A is canonical, that is, consists of
canonical transformations with respect to the symplectic form Q defined in
Ezample (f) of §2.3, if and only if p; is unitary.

Proof. By definition,

Q(¢17¢2) = —2hIm <w17¢2>a

0
Q(peb1, prip2) = —2R1Im (pih1, prib2)

for 1,99 € H. Thus ¢; is canonical if and only if Im (@)1, pithe) =
Im (1)1, 12) and this in turn is equivalent to unitarity by complex linearity

of ¢ since (b, o) = —Im (i), 1po) + i Im (hq, 1hs) . [ ]

This shows that the flow of the Schrédinger equation 1) = Ay is
canonical and unitary and so preserves the probability amplitude of any
wave function that is a solution:

<‘Pt¢’ <Pt¢> = <wa ¢> )

where @, is the flow of A. Later we shall see how this conservation of the
norm also results from a symmetry-induced conservation law.

2.7 Poisson Brackets

Definition 2.7.1. Given a symplectic vector space (Z,) and two func-
tions F,G : Z — R, the Poisson bracket {F,G}: Z — R of F and G is
defined by

[F,G}(2) = UXr(2), Xa(2)). (2.7.1)
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Using the definition of a Hamiltonian vector field, we find that equivalent
expressions are

{F,G}(z) =dF(z) - Xg(2) = —dG(z) - Xp(2). (2.7.2)
In (2.7.2) we write £x.,F = dF - Xg, for the derivative of F' in the
direction Xg.

Lie Derivative Notation. The Lie derivative of f along X, £xf =
df-X is the directional derivative of f in the direction X. In coordinates
it is given by

of
£Xf=WXI (sum on I).

Functions F, G which are such that {F,G} = 0 are said to be in invo-
lution or to Poisson commute.

Examples
Now we turn to some examples of Poisson brackets.

(a) Canonical Bracket. Suppose that Z is 2n-dimensional. Then in

canonical coordinates (¢',...,¢", p1,...,pn) We have
oG
OF OF Op;
F.G} = S
ey [61%‘ &JJ e
oq’

_0F0G _OF oG
~ 9q' dpi Opi I¢°

From this, we get the fundamental Poisson brackets:
{¢,¢} =0, {pip;}=0, and {¢', p;}= (5; (2.7.4)

In terms of the Poisson structure, that is, the bilinear form B from §2.1,
the Poisson bracket takes the form

{F,G} = B(dF,dG). (2.7.5)
¢

(b) The Space of Functions. Let (Z,) be defined as in Example (b)
of §2.3 and let F,G : Z — R. Using (2.4.10) and (2.7.1) above, we get

{F,G} = Q(Xp,Xg) =Q ((i—i —(Z—i) ’ (% _%»

0G 6F  OF 6G
= —_—— . 2.7.
/]Ra (677 op  om 6@) (27.6)
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This example will be used in the next chapter when we study classical field
theory. ¢

The Jacobi-Lie Bracket. The Jacobi-Lie bracket [X,Y] of two vec-
tor fields X and Y on a vector space Z is defined by demanding that

df - [X,Y]=d(df Y) - X —-d(df-X) Y
for all real-valued functions f. In Lie derivative notation, this reads
Lixyvif=£x€yvf—LyLxf.
One checks that this condition becomes, in vector analysis notation,
(X, Y]=(X-V)Y — (Y- V)X,
and in coordinates,

(X,Y)) = xILys _y1 9

J
0z 0z X

Proposition 2.7.2. Let[,] denote the Jacobi-Lie bracket of vector fields,
and let F,G € F(Z). Then

Xray = —[Xr, Xq]. (2.7.7)

Proof. We calculate as follows:

( )
= Q(DXF z Xg(z),u) —Q(DXg(Z) XF(Z),
=QDXp(2)  Xa(z) —DXg(z) - Xr(2),u)
= Q(=[XF, Xc|(2),u)
Weak nondegeneracy of €2 implies the result. ]

Jacobi’s Identity. We are now ready to prove the Jacobi identity in a
fairly general context.

Proposition 2.7.3. Let (Z,9Q) be a symplectic vector space. Then the
Poisson bracket {,} : F(Z) x F(Z) — F(Z) makes F(Z) into a Lie
algebra. That is, this bracket is real bilinear, skew-symmetric, and satisfies
Jacobi’s identity, that is,

{FAG H}} +{G.{H F}} + {H {F,G}} =0.
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Proof. To verify Jacobi’s identity note that for F, G, H : Z — R, we have

{Fa {GaH}} = _"EXF{GaH} = £XF£XGH;
{G7 {H7F}} = _"€XG{H7F} = _£Xg£XFH

and
{HAF,G}} = £x0,H,
so that
{FAG HY} +{GA{H, F}} + {H{F,G}} = £x(p 6y H + £1xp x61H.
The result thus follows by (2.7.7). |

From Proposition 2.7.2 we see that the Jacobi-Lie bracket of two Hamil-
tonian vector fields is again Hamiltonian. Thus, we obtain:

Corollary 2.7.4. The set of Hamiltonian vector fields Xpam(Z) forms a
Lie subalgebra of X(Z).

Next, we characterize symplectic maps in terms of brackets.

Proposition 2.7.5. Let ¢ : Z — Z be a diffeomorphism. Then ¢ is
symplectic iff it preserves Poisson brackets, that is,

{o*F, "G} = ¢"{F,G}, (2.7.8)
forall F,G: Z — R.
Proof. We use the identity

e (£xf) = Lox (07 f),
which follows from the chain rule. Thus,

QD*{F> G} = ‘p*”{:XcF = "EW*XG(‘:O*F)
and
{7 F.0"G} = £x,, (9" F).

Thus ¢ preserves Poisson brackets iff ¢*Xg = Xgo, for every G : Z — R,
that is, iff ¢ is symplectic by Proposition 2.4.2. |

Proposition 2.7.6. Let Xy be a Hamiltonian vector field on Z, with
Hamiltonian H and flow ¢.. Then for F: Z — R,

%(Focpt):{Fogot,H}:{F,H}ogot. (2.7.9)
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Proof. By the chain rule and the definition of X,

L1(Fo ()] = dF(pi(2)) - Xn(ou(2)
= O(Xr (o), Xn(u(2)))
= (FH} ().

By Proposition 2.6.2 and (2.7.8), this equals {F o ¢, H o ¢:}(2) = {F o
i, H}(z) by conservation of energy. [ |

Corollary 2.7.7. Let F,G : Z — R. Then F is constant along integral
curves of Xq if and only if G is constant along integral curves of Xp and
this is true if and only if {F,G} = 0.

Proposition 2.7.8. Let A, B : Z — Z be linear Hamiltonian vector fields
with corresponding energy functions

Ha(z) = 1Q(Az,2) and Hp(z) =

-2

Q(Bz, z).

1
Letting [A, Bl = Ao B — Bo A be the operator commutator, we have
{Ha,Hp} = Hja p). (2.7.10)
Proof. By definition, Xz, = A and so
{Ha,Hp}(z) = Q(Az, Bz).
Since A and B are (2-skew, we get

{Ha,Hp}(2) = 3Q(ABz,2) — 3Q(BAz, z)

Q
Q([A, Blz,2z) = H[A7B](z). [ |

N[ D=

2.8 A Particle in a Rotating Hoop

In this subsection we take a break from the abstract theory to do an ex-
ample the “old-fashioned” way. This and other examples will also serve as
excellent illustrations of the theory we are developing.

Derivation of the Equations. Consider a particle constrained to move
on a circular hoop; for example a bead sliding in a hula-hoop. The particle is
assumed to have mass m and to be acted on by gravitational and frictional
forces, as well as constraint forces that keep it on the hoop. The hoop
itself is spun about a vertical axis with constant angular velocity w, as in
Figure 2.8.1.
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FIGURE 2.8.1. A particle moving in a hoop rotating with angular velocity w.

The position of the particle in space is specified by the angles 6 and
p, as shown in Figure 2.8.1. We can take ¢ = wt, so the position of the
particle becomes determined by 6 alone. Let the orthonormal frame along
the coordinate directions ey, e,, and e, be as shown.

The forces acting on the particle are:

1. Friction, proportional to the velocity of the particle relative to the
hoop: —vRfey, where v > 0 is a constant.

2. Gravity: —mgk.

3. Constraint forces in the directions e, and e, to keep the particle in
the hoop.

The equations of motion are derived from Newton’s second law F = ma.
To get them, we need to calculate the acceleration a; here a means the
acceleration relative to the fized inertial frame xyz in space; it does not
mean 6. Relative to this xyz coordinate system, we have

x = Rsinf cos p,
y = Rsinfsin g, (2.8.1)

z=—Rcosb.
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Calculating the second derivatives using ¢ = wt and the chain rule gives

i = —w?r — 0%z + (R cosf cos <p)9 — 2Rwb cos O sin ©,

i = —w?y — 0%y + (R cos O sin ) + 2Rwh cos b cos p, (2.8.2)

5= —262 + (Rsin6)0.

If i, j, k, denote unit vectors along the z,y, and z axes, respectively, we
have the easily verified relation

ep = (cos b cos )i+ (cosOsin)j + sin Ok. (2.8.3)

Now consider the vector equation F = ma, where F is the sum of the
three forces described earlier and

a=#i+ jj+ sk (2.8.4)

The e, and e, components of F = ma only tell us what the constraint
forces must be; the equation of motion comes from the ey component:

F-ep =ma-ey. (2.8.5)
Using (2.8.3), the left side of (2.8.5) is
F-eg = —vRO — mgsinf (2.8.6)
while from (2.8.2), (2.8.3), and (2.8.4), the right side of (2.8.5) is

ma - eg = m{icosfcosp + jjcosfsin g + Zsin b}
= m{cos 0 cos p[—w?z — 0%z + (Rcosf cos )0
— 2Rwh cos O sin @] + cos O sin p[—w?y — 6%y
+ (R cos 0 sin )b + 2Rw cos 6 cos ¢
+ sin §[—20% + (Rsin 6)6]}.
Using (2.8.1), this simplifies to
ma - eg = mR{f — w?sin 6 cos 6}. (2.8.7)
Comparing (2.8.5), (2.8.6), and (2.8.7), we get
0 = w?sinfcosh — %9 — % sin 6 (2.8.8)

as our final equation of motion. Several remarks concerning it are in order:

(i) fw =0 and v =0, (2.8.8) reduces to the pendulum equation
RO + gsinf = 0.

In fact, our system can be viewed just as well as a whirling pendu-
lum.
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(ii) For v = 0, (2.8.8) is Hamiltonian with respect to ¢ = 6, p = mR26,
canonical bracket structure

OF 0K 0K OF

FK}=——F— — —— 2.8.9
and the Hamiltonian
2 2,2
=5 pR2 —mgRcost — MY sin?0. (2.8.10)
m

Derivation as Euler—-Lagrange Equations. We now use Lagrangian
methods to derive (2.8.8). In Figure 2.8.1, the velocity is

v = Rley + (wRsinb)e,,
so the kinetic energy is

T = im|v|]® = %m(R292 + [wRsin 4]?), (2.8.11)

while the potential energy is
V = —mgRcos#. (2.8.12)

Thus the Lagrangian is given by

2

2
MW 020 4 mgRcos 0 (2.8.13)

1 .
L:T—V:imR292+

and the Euler-Lagrange equations, namely,
doL_or
dt 96~ 90’
(see §1.1 or §2.1) become

mR20 = mR%w? sinf cos § — mgRsin 6,

which are the same equations we derived by hand in (2.8.8) for v = 0.
The Legendre transform gives p = mR26 and the Hamiltonian (2.8.10).
Notice that this Hamiltonian is not the kinectic plus potential energy of
the particle. In fact, if one postulated this, then Hamnilton’s equations
would give the incorrect equations. This has to do with deeper covariance
properties of the Lagrangian versus Hamiltonian equations.

Equilibria. The equilibrium solutions are solutions satisfying 6 =0,
0 = 0; (2.8.8) gives

Rw?sinf cosf = gsinf. (2.8.14)
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Certainly, 8 = 0 and 6 = 7 solve (2.8.14) corresponding to the particle at
the bottom or top of the hoop. If § # 0 or =, (2.8.14) becomes

Rw?cosf =g (2.8.15)

which has two solutions when g/Rw? < 1. The value

we = (2.8.16)

g
R
is the critical rotation rate. (Notice that w, is the frequency of linearized
oscillations for the simple pendulum, that is, for R + g6 = 0.) For w < w,
there are only two solutions § = 0, =, while for w > w. there are four
solutions,

=0, £cos ! (%) . (2.8.17)

We say that a bifurcation (or a Hamiltonian pitchfork bifurcation
to be accurate) has occurred as w crosses w.. We can see this graphically
in computer generated solutions of (2.8.8). Set # = 6,y = 0 and rewrite
(2.8.8) as

T =y,
2.8.18
y:%(acosx—l)sinx—ﬁy, ( )

where a = Rw?/g and 8 = v/m. Taking g = R for illustration, Figure 2.8.2
shows representative orbits in the phase portraits of (2.8.18) for various
a, 0.

This system with v = 0; that is, § = 0, is symmetric in the sense that the
Zo-action given by 6 — —# and 6 — —0 leaves the phase portrait invariant.
If this Zs symmetry is broken, by setting the rotation axis a little off center,
for example, then one side gets preferred, as in Figure 2.8.3.

The evolution of the phase portrait for v = 0 is shown in Figure 2.8.4.

Near 6 = 0, the potential function has changed from the symmetric bi-
furcation in Figure 2.8.5(a) to the unsymmetric one in Figure 2.8.5(b). This
is what is known as the cusp catastrophe; see Golubitsky and Schaeffer
[1985] and Arnold [1968, 1984] for more information.

In (2.8.8), imagine that the hoop is subject to small periodic pulses; say
w = wp + pcos(nt). Using the Melnikov method described in the intro-
duction and in the following section, it is presumably true (but a messy
calculation to prove) that the resulting time-periodic system has horseshoe
chaos if € and v are small, but p/v exceeds a critical value. See Exercise
2.8-3 and §2.11.
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a=15p=0.1

FIGURE 2.8.2. Phase portraits of the ball in the rotating hoop.

FIGURE 2.8.3. A ball in an off-center rotating hoop.

Exercises

o Exercise 2.8-1. Derive the equations of motion for a particle in a hoop
spinning about a line a distance € off center. What can you say about the
equilibria as functions of € and w?

o Exercise 2.8-2. Derive the formula of Exercise 1.9-1 for the homoclinic
orbit (the orbit tending to the saddle point as ¢ — +o0) of a pendulum
¥ + sintp = 0. Do this using conservation of energy, determining the value
of the energy on the homoclinic orbit, solving for 9 and then integrating.
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=@

©@

FIGURE 2.8.4. The phase portraits for the ball in the off-centered hoop as the
angular velocity increases.

W

(@ e=0

AN

FIGURE 2.8.5. The evolution of the potential for the ball in the centered and the
off-centered hoop.

Exercise 2.8-3. Using the method of the preceding exercise, derive an
integral formula for the homoclinic orbit of the frictionless particle in a
rotating hoop.

Exercise 2.8-4. Determine all equilibria of Duffing’s equation
& — B+ az =0,

where a and ( are positive constants and study their stability. Derive a
formula for the two homoclinic orbits.

Exercise 2.8-5. Determine the equations of motion and bifurcations for
a ball in a light rotating hoop, but this time the hoop is not forced to
rotate with constant angular velocity, but rather is free to rotate so that

its angular momentum p is conserved. Check to see

if solution
Exercise 2.8-6. Consider the pendulum shown in Figure 2.8.6. It is a

planar pendulum whose suspension point is being whirled in a circle with
angular velocity w, by means of a vertical shaft, as shown. The plane of
the pendulum is orthogonal to the radial arm of length R. Ignore frictional
effects.
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| = pendulum length
m = pendulum bob mass
g = gravitational acceleration
R = radius of circle
w = angular velocity of shaft

0 = angle of pendulum from
the downward vertical

FIGURE 2.8.6. A whirling pendulum.

(i) Using the notation in the figure, find the equations of motion of the
pendulum.

(ii) Regarding w as a parameter, show that a supercritical pitchfork bi-
furcation of equilibria occurs as the angular velocity of the shaft is
increased.

2.9 The Poincaré-Melnikov Method and
Chaos

Recall from the introduction that in the simplest version of the Poincaré-
Melnikov method we are concerned with dynamical equations that perturb
a planar Hamiltonian system

Z=Xo(2) (2.9.1)
to one of the form
2= Xo(z) + eX1(z,1), (2.9.2)

where € is a small parameter, z € R2, X, is a Hamiltonian vector field
with energy Hy, X; is periodic with period T, and is Hamiltonian with
energy a T-periodic function H;. We assume that X, has a homoclinic
orbit Z(t) so Z(t) — zo, a hyperbolic saddle point, as ¢ — +oc0. Define the
Poincaré-Melnikov function by

M(to) = /_ [ Ho, Hy Y3 (t — o), 1) dt (2.9.3)

where {, } denotes the Poisson bracket.
There are two convenient ways of visualizing the dynamics of (2.9.2).
Introduce the Poincaré map P? : R? — R? which is the time T map for
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(2.9.2) starting at time s. For € = 0, the point zp and the homoclinic orbit
are invariant under Fj§, which is independent of s. The hyperbolic saddle
zo persists as a nearby family of saddles z. for € > 0, small, and we are
interested in whether or not the stable and unstable manifolds of the point
z. for the map P? intersect transversally (if this holds for one s, it holds
for all s). If so, we say (2.9.2) has horseshoes for e > 0.

The second way to study (2.9.2) is to look directly at the suspended
system on R? x St where S! is the circle; (2.9.2) becomes the autonomous
suspended system

2= Xo(2) + €X1(z,0),

i1 (2.9.4)

From this point of view, 6 gets identified with time and the curve

Yo(t) = (20,1)

is a periodic orbit for (2.9.4). This orbit has stable manifolds and unsta-
ble manifolds denoted W (o) and Wi'(vo) defined as the set of points
tending exponentially to 79 as t — oo and ¢ — —oo, respectively. (See
Abraham, Marsden, and Ratiu [1988], Guckenheimer and Holmes [1983],
or Wiggins [1988, 1990, 1992] for more details.) In this example, they co-
incide:

W5 (o) = W' (10)-

For € > 0 the (hyperbolic) closed orbit v perturbs to a nearby (hyper-
bolic) closed orbit which has stable and unstable manifolds W2 () and
W(5e). If W2(y.) and WH(~,) intersect transversally, we again say that
(2.9.2) has horseshoes. These two definitions of admitting horseshoes are
readily seen to be equivalent.

Theorem 2.9.1 (Poincaré—Melnikov Theorem). Let the Poincaré-
Melnikov function be defined by (2.9.3). Assume M(ty) has simple zeros
as a T-periodic function of tg. Then, for sufficiently small €, (2.9.2) has
horseshoes; that is, homoclinic chaos in the sense of transversal intersecting
separatrices.

Idea of the Proof. In the suspended picture, we use the energy function
Hj to measure the first-order movement of W#(v.) at z(0) at time ¢y as
€ is varied. Note that points of Z(t) are regular points for Hy since Hy is
constant on z(t) and Z(0) is not a fixed point. That is, the differential of Hy
does not vanish at z(0). Thus, the values of Hy give an accurate measure
of the distance from the homoclinic orbit. If (22(¢,%o),t) is the curve on
W2 (v.) that is an integral curve of the suspended system and has an initial
condition z¢(tg,to) that is the perturbation of

W (v0) N {the plane t =t}
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in the normal direction to the homoclinic orbit, then Hy(z2(to,tp)) mea-
sures the normal distance. But

Ho(2{(14,t0)) — Ho(2¢(to,t0))

= " —dH d
S(t,t t
/t dt O(Ze( 5 0))

T4
= {Ho,HO —|—€H1}(Z‘:(t,t0),t) dt. (295)

to

From invariant manifold theory one learns that zZ(t,t) converges expo-
nentially to v.(t), a periodic orbit for the perturbed system as ¢t — +o0.
Notice from the right hand side of the first equality above that if z2(¢,to)
is replaced by the periodic orbit 7. (t), the result would be zero. Since the
convergence is exponential, one concludes that the integral is of order € for
an interval from some large time to infinity. To handle the finite portion of
the integral, we use the fact that 22(t, o) is e-close to Z(t — to) (uniformly
as t — +o00), and that {Hy, Ho} = 0. Therefore, we see that

{Ho, Ho —+ EHl}(Z:(t,to),t) = E{Ho, Hl}(z(t — to),t) + 0(62).

Using this over a large but finite interval [tg,¢1] and the exponential close-
ness over the remaining interval [t1, 00), we see that (2.9.5) becomes

Ho(2¢(74,t0)) — Ho(2Z(to,t0))

T+
= 6/ {H(),Hl}(z(t—to),t) dt+0(62), (296)
to
where the error is uniformly small as 7, — oo. Similarly,

Ho(2¢(to,t0)) — Ho(z¢ (7-,t0))
=¢ tO{HO,Hl}(z(t —tg),t)dt + O(e?). (2.9.7)

T—

Again we use the fact that z2(71,%9) — 7.(7+) exponentially fast, a
periodic orbit for the perturbed system as 7, — 4o00. Notice that since
the orbit is homoclinic, the same periodic orbit can be used for negative
times as well. Using this observation, we can choose 7, and 7_ such that
Ho(28(14,t0))—Ho(z¥(7—,t0)) — 0as 74 — o0, 7_ — —oo. Thus, adding
(2.9.6) and (2.9.7), and letting 7 — o0, T_ — —00, we get

Ho (2 (to,t0)) — Ho(2{(to,t0))

= 6/:” {Ho, Hl}(z(t — to),t) dt + 0(62). (298)
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The integral in this expression is convergent because the curve Z(t — tg)
tends exponentially to the saddle point as ¢ — 400, and because the dif-
ferential of Hy vanishes at this point. Thus, the integrand tends to zero
exponentially fast as ¢ tends to plus and minus infinity.

Since the energy is a “good” measure of the distance between the points
z2(to,to)) and 25 (to,to)), it follows that if M (tg) has a simple zero at time
to, then z¥(tg,t0) and z2(tg,to) intersect transversally near the point Z(0)
at time tg. | |

If in (2.9.2), only X, is Hamiltonian, the same conclusion holds if (2.9.3)
is replaced by

M(to) = /OO (XO X Xl)(f(t — to),t) dt (299)

—0o0

where X x X7 is the (scalar) cross product for planar vector fields. In fact,
X need not even be Hamiltonian if an area expansion factor is inserted.

Example A. Equation (2.9.9) applies to the forced damped Duffing equa-
tion

il — Bu + au® = e(y coswt — 81). (2.9.10)

Here the homoclinic orbits are given by (see Exercise 2.8-4)

u(t) = j:\/?sech(\/ﬁt) (2.9.11)

and (2.9.9) becomes, after a residue calculation,

/
M(to) = fww\/gsech (%) sin(wtp) — 4(535%7 (2.9.12)

so one has simple zeros and hence chaos of the horseshoe type if

vo2V/233/2 Tw

—~ > ————cosh | —= 2.9.13

5~ Buova M\ (2:9.13)
and e is small. ¢

Example B. Another interesting example, due to Montgomery [1985],
concerns the equations for superfluid 3He. These are the Leggett equations
and we shall confine ourselves to what is called the A phase for simplicity
(see Montgomery’s paper for additional results). The equations are

. 1 /xQ%\ .
s:—§<7)s1n29
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and
. 2 1
0= (—) s—€ (’yB sinwt + §F sin29) . (2.9.14)
X
Here s is the spin, 6 an angle (describing the “order parameter”), and
v, X, .. are physical constants. The homoclinic orbits for ¢ = 0 are given
by
_ L o Qei2ﬂt
9:|: = 2tan” (6 ) - 7T/2 and 54 = i2w (2915)

One calculates the Poincaré-Melnikov function to be

B 2
M (tg) = :Fm;: sech (%) cos wt — g%QF, (2.9.16)

so that (2.9.14) has chaos in the sense of horseshoes if

vB 16 Q W
17 0% osh (¥ 2.9.1
T~ 3rw > (29) (2:9.17)

and if € is small. ¢

For references and information on higher-dimensional versions of the
method and applications, see Wiggins [1988]. We shall comment on some
aspects of this shortly. There is even a version of the Poincaré-Melnikov
method applicable to PDEs (due to Holmes and Marsden [1981]). One ba-
sically still uses formula (2.9.9) where X x X is replaced by the symplectic
pairing between Xy and X;. However, there are two new difficulties in ad-
dition to standard technical analytic problems that arise with PDEs. The
first is that there is a serious problem with resonances. This can be dealt
with using the aid of damping. Second, the problem seems to be not re-
ducible to two dimensions; the horseshoe involves all the modes. Indeed,
the higher modes do seem to be involved in the physical buckling processes
for the beam model discussed next.

Example C. A PDE model for a buckled forced beam is
1
O+w” +Tw —k </ [w']? dz) w” = €(f coswt — &), (2.9.18)
0
where w(z,t),0 < z < 1, describes the deflection of the beam,
"=09/0t, '=0/0z,

and I', k, ... are physical constants. For this case, one finds that if

(i) 72 < T < 4p? (first mode is buckled);
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(i) j%m2(j2m2 —T) # w?,j =2,3,... (resonance condition);

_ 2
(iii) g > W(;—‘w\/g )cosh (2 d ) (transversal zeros for M (tg));

(iv) 6 > 0;

and e is small, then (2.9.18) has horseshoes. Experiments (see Moon [1988])
showing chaos in a forced buckled beam provided the motivation which lead
to the study of (2.9.18). ¢

This kind of result can also be used for a study of chaos in a van der Waals
fluid (Slemrod and Marsden [1985]) and for soliton equations (see Birnir
[1986], Ercolani, Forest, and McLaughlin [1990], and Birnir and Grauer
[1994]). For example, in the damped, forced sine-Gordon equation one has
chaotic transitions between breathers and kink-antikink pairs and in the
Benjamin—-Ono equation one can have chaotic transitions between solutions
with different numbers of poles.

More Degrees of Freedom. For Hamiltonian systems with two degrees
of freedom, Holmes and Marsden [1982a] show how the Melnikov method
may be used to prove the existence of horseshoes on energy surfaces in
nearly integrable systems. The class of systems studied have a Hamiltonian
of the form

H(q,p,0,1) = F(q,p) + G(I) + eH:(q,p,0,1) + O(*), (2.9.19)

where (6, I) are action-angle coordinates for the oscillator G; G(0) = 0,G’ >
0. It is assumed that F' has a homoclinic orbit Z(t) = (g(t),p(¢)) and that

M(ty) = /OO {F, Hy} dt, (2.9.20)

— 00

the integral taken along (Z(t — to), ¢, I) has simple zeros. Then (2.9.19)
has horseshoes on energy surfaces near the surface corresponding to the
homoclinic orbit and small I; the horseshoes are taken relative to a Poincaré
map strobed to the oscillator G. The paper by Holmes and Marsden [1982a]
also studies the effect of positive and negative damping. These results are
related to those for forced one degree of freedom systems since one can
often reduce a two degrees of freedom Hamiltonian system to a one degree
of freedom forced system.

For some systems in which the variables do not split as in (2.9.19), such
as a nearly symmetric heavy top, one needs to exploit a symmetry of the
system and this complicates the situation to some extent. The general
theory for this is given in Holmes and Marsden [1983] and was applied
to show the existence of horseshoes in the nearly symmetric heavy top; see
also some closely related results of Ziglin [1980a).
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This theory has been used by Ziglin [1980b] and Koiller [1985] in vor-
tex dynamics, for example, to give a proof of the non-integrability of the
restricted four vortex problem. Koiller, Soares and Melo Neto [1985] gives
applications to the dynamics of general relativity showing the existence of
horseshoes in Bianchi IX models. See Oh, Sreenath, Krishnaprasad, and
Marsden [1989] for applications to the dynamics of coupled rigid bodies.

Arnold [1964] extended the Poincaré-Melnikov theory to systems with
several degrees of freedom. In this case the transverse homoclinic manifolds
are based on KAM tori and allow the possibility of chaotic drift from one
torus to another. This drift, now known as Arnold diffusion is a much
studied ingredient in the study of chaos in Hamiltonian systems but its
theoretical foundation is still uncertain.

Instead of a single Melnikov function, in the multidemnsional case one
has a Melnikov vector given schematically by

[ {Ho, Hy} dt

> AL, Hi}ydt
M= / , (2.9.21)

7 AT, Hi b dt

where Iy, ..., I, are integrals for the unperturbed (completely integrable)
system and where M depends on ¢ty and on angles conjugate to I1,... , I,.
One requires M to have transversal zeros in the vector sense. This result was
given by Arnold for forced systems and was extended to the autonomous
case by Holmes and Marsden [1982b, 1983]; see also Robinson [1988]. These
results apply to systems such as a pendulum coupled to several oscillators
and the many vortex problems. It has also been used in power systems by
Salam, Marsden, and Varaiya [1983], building on the horseshoe case treated
by Kopell and Washburn [1982]. See also Salam and Sastry [1985]. There
have been a number of other directions of research on these techniques. For
example, Grundler [1985] developed a multidimensional version applicable
to the spherical pendulum and Greenspan and Holmes [1983] showed how
it can be used to study subharmonic bifurcations. See Wiggins [1988] for
more information.

Poincaré and Exponentially Small Terms. In Poincaré’s celebrated
memoir [1890] on the three-body problem, he introduced the mechanism of
transversal intersection of separatrices which obstructs the integrability of
the equations and the attendant convergence of series expansions for the
solutions. This idea has been developed by Birkhoff and Smale using the
horseshoe construction to describe the resulting chaotic dynamics. How-
ever, in the region of phase space studied by Poincaré, it has never been
proved (except in some generic sense that is not easy to interpret in specific
cases) that the equations really are nonintegrable. In fact, Poincaré him-
self traced the difficulty to the presence of terms in the separatrix splitting
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which are exponentially small. A crucial component of the measure of the
splitting is given by the following formula of Poincaré [1890, p. 223]:
J— —87i 7
exp (ﬁ) + exp (*ﬁ)

which is exponentially small (or beyond all orders) in p. Poincaré was aware
of the difficulties that this exponentially small behavior causes; on page
224 of his article, he states: “En d’autres termes, si on regarde y comme
un infiniment petit du premier ordre, la distance BB’, sans étre nulle, est
un infiniment petit d’ordre infini. C’est ainsi que la fonction e~ '/# est un
infiniment petit d’ordre infini sans étre nulle ... Dans I’example particulier
que nous avons traité plus haut, la distance BB’ est du méme ordre de
grandeur que l'integral J, c’est & dire que exp(—m/y/2u).”

This is a serious difficulty that arises when one uses the Melnikov method
near an elliptic fixed point in a Hamiltonian system or in bifurcation prob-
lems giving birth to homoclinic orbits. The difficulty is related to those
described by Poincaré. Near elliptic points, one sees homoclinic orbits in
normal forms and after a temporal rescaling this leads to a rapidly os-
cillatory perturbation that is modeled by the following variation of the
pendulum equation:

; ¢
@+ sin ¢ = e cos (w_) . (2.9.22)
€
If one formally computes M (tg) one finds:

M (to, €) = 2w sech (E) cos (w_to> . (2.9.23)
2e €
While this has simple zeros, the proof of the Poincaré-Melnikov theorem is
no longer valid since M (tg, €) is now of order ¢~7/2¢ and the error analysis
in the proof only gives errors of order €2. In fact, no expansion in powers
of € can detect exponentially small terms like e~ 7/2¢,

Holmes, Marsden, and Scheurle [1988] and Delshams and Seara [1991]
show that (2.9.22) has chaos that is, in a suitable sense, exponentially small
in e. The idea is to expand expressions for the stable and unstable manifolds
in a Perron type series whose terms are of order e¥e~"/2¢. To do so, the
extension of the system to complex time plays a crucial role. One can
hope that since such results for (2.9.22) can be proved, it may be possible
to return to Poincaré’s 1890 work and complete the arguments he left
unfinished. In fact, these exponentially small phenomena is one reason that
the problem of Arnold diffusion is both hard and delicate.

To illustrate how exponentially small phenomena enter bifurcation prob-
lems, consider the problem of a Hamiltonian saddle node bifurcation

i+ pr+a?=0 (2.9.24)
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with the addition of higher-order terms and forcing:
i+ px +2? +hot. = 8f(1). (2.9.25)

The phase portrait of (2.9.24) is shown in Figure 2.9.1.
N =
. g

u<o u>0

X
o
>
x.

NN\==PP

FIGURE 2.9.1. Phase portraits of & + ux + 2> = 0.

The system (2.9.24) is Hamiltonian with

1 1 1
H(z,&) = 53'32 + i,uxz + §x3, (2.9.26)

Let us first consider the system without higher-order terms:
&+ px + x? = 5f(t). (2.9.27)
To study it, we rescale to blow up the singularity; let
z(t) = (7)), (2.9.28)

where A\ = |u| and 7 = tv/\. Letting ’ = d/dr, we get

" __ 2_£ T
(2.9.29)

o)
E”+§+£2Ef(#>, >0,

The exponentially small estimates of Holmes, Marsden, and Scheurle [1988]
apply to (2.9.29). One gets exponentially small upper and lower estimates
in certain algebraic sectors of the (4, ) plane that depend on the nature
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of f. The estimates for the splitting have the form C(6/u?) exp(—m/+/|ul)-
Now consider

&4 pr 4?2 = 6f(t). (2.9.30)

With § = 0, there are equilibria at

x=0, —r, or —Y and @=o0, (2.9.31)
T

where

r= M, (2.9.32)
2
which is approximately 1 when p ~ 0. The phase portrait of (2.9.30) with
6=0and p = —% is shown in Figure 2.9.2. As u passes through 0, the
small lobe in Figure 2.9.2 undergoes the same bifurcation as in Figure 2.9.2,
with the large lobe changing only slightly.

AX

FIGURE 2.9.2. The phase portrait of & — 1z + 2° +2® = 0.

Again we rescale to give

. 5
&+ —pe® = Ef <_;M)’ w <0,
(2.9.33)

. s
Ererep = (#) 4> 0.

Notice that for § = 0, the phase portrait is u-dependent. The homoclinic
orbit surrounding the small lobe for p < 0 is given explicitly in terms of £
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by

4e™
TN=—————, 2.9.34
= (29.34)

which is p-dependent. An interesting technicality is that without the cubic
term, we get p-independent double poles at t = +im + log2 — log 3 in the
complex 7-plane, while (2.9.34) has a pair of simple poles that splits these
double poles to the pairs of simple poles at

2
T = +im + log (5 + i\/2)\> , (2.9.35)

where again A = |u|. (There is no particular significance to the real part,
such as log 2 —log 3 in the case of no cubic term; this can always be gotten
rid of by a shift in the base point £(0).)

If a quartic term z* is added, these pairs of simple poles will split into
quartets of branch points and so on. Thus, while the analysis of higher-order
terms has this interesting pu-dependence, it seems that the basic exponential
part of the estimates, namely

exp [ ——— |, 2.9.36
"( W) 2030

remains intact.



