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14
Coadjoint Orbits

In this chapter we prove, amongst other things, that the coadjoint orbits
of a Lie group are symplectic manifolds . These symplectic manifolds are,
in fact, the symplectic leaves for the Lie–Poisson bracket. This result was
developed and used by Kirillov, Arnold, Kostant, and Souriau in the early
to mid-1960s, although it had important roots going back to the work of
Lie, Borel, and Weil. (See Kirillov [1962, 1976b], Arnold [1966a], Kostant
[1970], and Souriau [1969].) Here we give a direct proof. In Volume II we
shall see a more “natural” proof using reduction.

Recall from Chapter 9 that the adjoint representation of a Lie group
G is defined by

Adg = TeIg : g→ g,

where Ig : G → G is the inner automorphism Ig(h) = ghg−1. The coad-
joint action is given by

Ad∗g−1 : g∗ → g∗,

where Ad∗g−1 is the dual of the linear map Adg−1 , that is, it is defined by

〈Ad∗g−1(µ), ξ〉 = 〈µ,Adg−1(ξ)〉,

where µ ∈ g∗, ξ ∈ g, and 〈 , 〉 denotes the pairing between g∗ and g. The
coadjoint orbit , Orb(µ), through µ ∈ g∗ is the subset of g∗ defined by

Orb(µ) := {Ad∗g−1(µ) | g ∈ G} := G · µ.

Like the orbit of any group action, Orb(µ) is an immersed submanifold of
g∗ and if G is compact, Orb(µ) is a closed embedded submanifold.
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14.1 Examples of Coadjoint Orbits

(a) Rotation Group. As we saw in §9.3, the adjoint action for SO(3)
is

AdA(v) = Av, where A ∈ SO(3) and v ∈ R3 ∼= so(3).

Identify so(3)∗ with R3 by the usual dot product, that is, if Π,v ∈ R3 , we
have 〈Π, v̂〉 = Π · v. Thus, for Π ∈ so(3)∗ and A ∈ SO(3),

〈Ad∗A−1(Π), v̂〉 = 〈Π,AdA−1(v̂)〉 = 〈Π, (A−1v̂)〉 = Π ·A−1v

= (A−1)TΠ · v = AΠ · v (14.1.1)

since A is orthogonal. Hence, with so(3)∗ identified with R3 ,Ad∗A−1 = A,
and so

Orb(Π) = {Ad∗A−1(Π) | A ∈ SO(3)} = {AΠ | A ∈ SO(3)}, (14.1.2)

which is the sphere in R3 of radius ‖Π‖. �

(b) Affine Group on R. Consider the Lie group of transformations of
R of the form T (x) = ax+ b where a 6= 0. Identify G with the set of pairs
(a, b) ∈ R2 with a 6= 0. Since

(T1 ◦ T2)(x) = a1(a2x+ b2) + b1 = a1a2x+ a1b2 + b1

and

T−1(x) =
1
a

(x− b),

we take group multiplication to be

(a1, b1) · (a2, b2) = (a1a2, a1b2 + b1). (14.1.3)

The inverse of (a, b) is

(a, b)−1 =
(

1
a
,− b

a

)
(14.1.4)

and the identity element is (1, 0). Thus, G is a two-dimensional Lie group.
It is an example of a semidirect product . (See Exercise 9.3-1.) As a set,
the Lie algebra of G is g = R2 ; to compute the bracket on g we shall first
compute the adjoint representation. The inner automorphisms are given by

I(a,b)(c, d) = (a, b) · (c, d) · (a, b)−1

= (ac, ad+ b) ·
(

1
a
,− b

a

)
= (c, ad− bc+ b), (14.1.5)
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and so differentiating (14.1.5) with respect to (c, d) at the identity in the
direction of (u, v) ∈ g, gives

Ad(a,b)(u, v) = (u, av − bu). (14.1.6)

Differentiating (14.1.6) with respect to (a, b) in the direction (r, s) gives the
Lie bracket

[(r, s), (u, v)] = (0, rv − su). (14.1.7)

The adjoint orbit through (u, v) is {u} × R if (u, v) 6= (0, 0) and is {(0, 0)}
if (u, v) = (0, 0). The adjoint orbit {u} × R cannot be symplectic, as it is
one dimensional. To compute the coadjoint orbits, denote elements of g∗ by(
α
β

)
and the pairing

〈
(u, v),

(
α
β

)〉
= αu+ βv (14.1.8)

identifies g∗ with R2 . Then〈
Ad∗(a,b)

(
α
β

)
, (u, v)

〉
=
〈(

α
β

)
,Ad(a,b)(u, v)

〉
=
〈(

α
β

)
, (u, av − bu)

〉
= αu+ βav − βbu. (14.1.9)

Thus,

Ad∗(a,b)

(
α
β

)
=
(
α− βb
βa

)
. (14.1.10)

If β = 0, the coadjoint orbit through
(
α
β

)
is a single point. If β 6= 0, the

orbit through
(
α
β

)
is R2 minus the β-axis. �

(c) Orbits in X∗div. Let G = Diffvol(Ω), the group of volume-preserving
diffeomorphisms of a region Ω in Rn , with Lie algebra Xdiv(Ω). In Exam-
ple (d) of §10.2 we identified X∗div(Ω) with Xdiv(Ω) by using the L2-pairing
on vector fields. Here we begin by finding a different representative of the
dual X∗div(Ω), which is more convenient for explicitly determining the coad-
joint action. Then we return to the identification above and will find the
expression for the coadjoint action on Xdiv(Ω); it will turn out to be more
complicated.

The main technical ingredient used below is the Hodge decomposition
theorem for manifolds with boundary. Here we state only the relevant facts
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432 14.1 Examples of Coadjoint Orbits

to be used below. A k-form α is said to be tangent to ∂Ω if i∗(∗α) =
0. Let Ωkt (Ω) denote all k-forms on M which are tangent to ∂Ω. One of
the Hodge decomposition theorems states that there is an L2-orthogonal
decomposition

Ωk(Ω) = dΩk−1(Ω)⊕ {α ∈ Ωkt (Ω) | δα = 0}.

This implies that the pairing

〈 , 〉 : {α ∈ Ω1
t (Ω) | δα = 0} × Xdiv(Ω)→ R

given by

〈M,X〉 =
∫

Ω

MiX
idnx. (14.1.11)

is weakly nondegenerate. Indeed, if

M ∈ {α ∈ Ω1
t (M) | δα = 0}

and 〈M,X〉 = 0 for all X ∈ Xdiv(Ω), then 〈M,B〉 = 0 for all

B ∈ {Ω1
t (Ω) | δB = 0}

because the index lowering operator [ given by the metric on Ω induces an
ismorphism between Xdiv(Ω) and

{α ∈ Ω1
t (Ω) | δB = 0}.

Therefore, by the L2-orthogonal decomposition quoted above, M = df
and hence M = 0. Similarly, if X ∈ Xdiv(Ω) and 〈M,X〉 = 0 for all
M ∈ {α ∈ Ω1

t (M) | δα = 0}, then 〈M,X[〉 = 0 for all such M , and as
before X[ = df , that is, X = ∇f . But this implies X = 0 since Xdiv(Ω)
and gradients are L2-orthogonal by the Stokes theorem. Therefore, we can
identify

X∗div(Ω) = {M ∈ Ω1
t (Ω) | δM = 0}. (14.1.12)

The coadjoint action of Diffvol(Ω) on X∗div(Ω) is computed in the follow-
ing way. Recall from Chapter 9 that Adϕ(X) = ϕ∗X for ϕ ∈ Diffvol(Ω)
and X ∈ Xdiv(Ω). Thus,

〈Ad∗ϕ−1 M,X〉 = 〈M,Adϕ−1 X〉 =
∫

Ω

M · ϕ∗X dnx =
∫

Ω

ϕ∗M ·Xdnx

by the change of variables formula. Therefore,

Ad∗ϕ−1 M = ϕ∗M and so OrbM = {ϕ∗M | ϕ ∈ Diffvol(Ω)}. (14.1.13)
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Next, let us return to the identification of Xdiv(Ω) with itself by the
L2-pairing on vector fields

〈X,Y 〉 =
∫

Ω

X · Y dnx. (14.1.14)

The Helmholtz decomposition says that any vector field on Ω can be
uniquely decomposed orthogonally in a sum of a gradient of a function and
a divergence-free vector field tangent to ∂Ω; this decomposition is equiva-
lent to the Hodge decomposition on one-forms quoted before. This shows
that (14.1.14) is a weakly nondegenerate pairing. For ϕ ∈ Diffvol(Ω), denote
by (Tϕ)† the adjoint of Tϕ : TΩ→ TΩ relative to the metric (14.1.14). By
the change of variables formula,

〈Ad∗ϕ−1 Y,X〉 = 〈Y,Adϕ−1 X〉 =
∫

Ω

Y · ϕ∗X dnx

=
∫

Ω

Y · (Tϕ−1 ◦X ◦ ϕ) dnx

=
∫

Ω

((Tϕ−1)† ◦ Y ◦ ϕ) ·X dnx,

that is,

Ad∗ϕ−1 Y = (Tϕ−1)† ◦ Y ◦ ϕ (14.1.15)

and

Orb Y = {(Tϕ−1)† ◦ Y ◦ ϕ | ϕ ∈ Diffvol(Ω)}. (14.1.16)

This example shows that different pairings give rise to different formulae
for the coadjoint action and that the choice of dual is dictated by the
specific application one has in mind. For example, the pairing (14.1.14)
was convenient for the Lie–Poisson bracket on Xdiv(Ω) in Example (d)
of §10.2. On the other hand, many computations involving the coadjoint
action are simpler with the choice (14.1.12) of the dual corresponding to
the pairing (14.1.11). �

(d) Orbits in X∗can. Let G = Diffcan(P ) be the group of canonical trans-
formations of a symplectic manifold P with H1(P ) = 0. Letting k be a
function on P, and Xk the corresponding Hamiltonian vector field, and
ϕ ∈ G, we have

AdϕXk = ϕ∗Xk = Xk◦ϕ−1 (14.1.17)

so identifying g with F(P ) modulo constants, or equivalently with functions
on P with zero average, we get Adϕ k = ϕ∗k = k ◦ϕ−1. On the dual space,
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434 14.1 Examples of Coadjoint Orbits

which is identified with F(P ) (modulo constants) via the L2-pairing, a
straightforward verification shows that

Ad∗ϕ−1 f = ϕ∗f = f ◦ ϕ−1. (14.1.18)

One sometimes says that

Orb(f) = {f ◦ ϕ−1 | ϕ ∈ Diffcan(P )}

consists of canonical rearrangements of f . �

(e) Toda Orbit. Another interesting example is the Toda orbit, which
arises in the study of completely integrable systems. Let

g = Lie algebra of real n× n lower triangular matrices
of trace zero,

G = lower triangular matrices with determinant one,

and identify

g∗ = the upper triangular matrices,

using the pairing

〈ξ, µ〉 = Trace(ξµ),

where ξ ∈ g and µ ∈ g∗. Since AdA ξ = AξA−1, we get

Ad∗A−1 µ = P (AµA−1), (14.1.19)

where P : sl(n,R) → g∗ is the projection sending any matrix to its upper
triangular part. Now let

µ =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0


∈ g∗. (14.1.20)

One finds that Orb(µ) = {P (AµA−1) | A ∈ G} consists of matrices of the
form

L =



b1 a1 0 0 · · · 0 0
0 b2 a2 0 · · · 0 0
0 0 b3 a3 · · · 0 0
0 0 0 b4 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · bn−1 an−1

0 0 0 0 · · · 0 bn


, (14.1.21)
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where
∑
bn = 0. See Kostant [1980] and Symes [1982a,b] for further infor-

mation. �

(f) Coadjoint Orbits That Are Not Submanifolds. The following ex-
ample of a Lie group G, whose generic coadjoint orbits in g∗ are not sub-
manifolds, is due to Kirillov [1976b], p. 293. Let α be irrational, define

G =


 eit 0 z

0 eiαt w
0 0 1

∣∣∣∣∣∣ t ∈ R, z, w ∈ C

 , (14.1.22)

and note the G is diffeomorphic to R5 . As a group it is the semidirect
product of

H =
{[

eit 0
0 eiαt

]∣∣∣∣ t ∈ R}
with C 2 , the action being by left multiplication of vectors in C 2 by elements
of H (see Exercise 9.3-1). The Lie algebra g of G is

g =


 it 0 x

0 iαt y
0 0 0

∣∣∣∣∣∣ t ∈ R, x, y ∈ C
 (14.1.23)

with the usual commutator bracket as Lie bracket. Identify g∗ with

g∗ =


 is 0 0

0 iαs 0
a b 0

∣∣∣∣∣∣ s ∈ R, a, b ∈ C
 (14.1.24)

via the nondegenerate pairing in gl(3, C ) is given by

〈A,B〉 = Re (trace(AB)).

The adjoint action of

g =

 eit 0 z
0 eiαt w
0 0 1

 on ξ =

 is 0 x
0 iαs y
0 0 0


is given by

Adg ξ =

 is 0 eitx− isz
0 iαs eiαty − iαsw
0 0 0

 . (14.1.25)

The coadjoint action of the same group element g on

µ =

 iu 0 0
0 iαu 0
a b 0


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is given by

Ad∗g−1 µ =

 iu′ 0 0
0 iαu′ 0

ae−it be−iαt 0

 , (14.1.26)

where

u′ = u+
1

1 + α2
Im(ae−itz + be−iαtαw). (14.1.27)

If a, b 6= 0, the orbit through µ is two dimensional; it is a cylindrical surface
whose generator is the u′-axis and whose base is the curve in C 2 given
parametrically by t 7→ (ae−it, be−iαt). This curve, however, is the irrational
flow on the torus with radii |a| and |b|, that is, the cylindrical surface
accumulates on itself and thus is not a submanifold of R5 . We shall return
to this example at the end of §14.6. �

14.2 Tangent Vectors to Coadjoint Orbits

In general, orbits of a Lie group action, while manifolds in their own right,
are not submanifolds of the ambient manifold; they are only injectively im-
mersed manifolds. A notable exception occurs in the case of compact Lie
groups: then all their orbits are embedded submanifolds. Coadjoint orbits
are no exception to this global problem, as we saw in the preceding exam-
ples. We shall always regard them as injectively immersed submanifolds,
diffeomorphic to G/Gµ, where Gµ = {g ∈ G | Ad∗g µ = µ} is the isotropy
subgroup of the coadjoint action at a point µ in the orbit.

We now describe tangent vectors to coadjoint orbits. Let ξ ∈ g and let
g(t) be a curve in G tangent to ξ at t = 0; for example, let g(t) = exp(tξ).
Let O be a coadjoint orbit, and µ ∈ O. If η ∈ g, then

µ(t) = Ad∗g(t)−1µ (14.2.1)

is a curve in O with µ(0) = µ. Differentiating the identity

〈µ(t), η〉 = 〈µ,Adg(t)−1η〉 (14.2.2)

with respect to t at t = 0, we get

〈µ′(0), η〉 = −〈µ, adξ η〉 = −〈ad∗ξ µ, η〉, and so µ′(0) = − ad∗ξ µ.
(14.2.3)

Thus,

TµO = {ad∗ξ µ | ξ ∈ g}. (14.2.4)
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This calculation also proves that the infinitessimal generator of the coad-
joint action is given by

ξg∗(µ) = − ad∗ξ µ. (14.2.5)

The following characterization of the tangent space to coadjoint orbits
is often useful. We let gµ = {ξ ∈ g | ad∗ξ µ = 0} be the coadjoint isotropy
algebra of µ; it is the Lie algebra of the coadjoint isotropy group Gµ =
{g ∈ G | Ad∗g µ = µ}.
Proposition 14.2.1. Let 〈 , 〉 : g∗ × g → R be a weakly nondegenerate
pairing and let O be the coadjoint orbit through µ ∈ g∗. Let

g◦µ := {ν ∈ g∗ | 〈ν, η〉 = 0 for all η ∈ gµ}

be the annihilator of gµ in g∗. Then TµO ⊂ g◦µ. If g is finite dimensional,
then TµO = g◦µ. The same equality holds if g and g∗ are Banach spaces,
TµO is closed in g∗, and the pairing is strongly nondegenerate.

Proof. For any ξ ∈ g, η ∈ gµ we have

〈ad∗ξ µ, η〉 = 〈µ, [ξ, η]〉 = −〈ad∗η µ, ξ〉 = 0,

which proves the inclusion TµO ⊂ g◦µ. If g is finite dimensional, equality
holds since dimTµO = dim g − dim gµ = dim g◦µ. If g and g∗ are infinite-
dimensional Banach spaces and 〈 , 〉 : g∗ × g → R is a strong pairing, we
can assume without loss of generality that it is the natural pairing between
a Banach space and its dual. If g◦µ 6= TµO pick ν 6= 0, ν ∈ g◦µ, ν 6∈ TµO.
By the Hahn–Banach theorem there is an η ∈ g such that 〈ν, η〉 = 1
and 〈ad∗ξ µ, η〉 = 0 for all ξ ∈ g. The latter condition is equivalent to
η ∈ gµ. On the other hand, since ν ∈ g◦µ we have 〈ν, η〉 = 0, which is a
contradiction. �

Examples of Tangent Vectors

(a) Rotation Group. Identifying (so(3), [· , ·]) ∼= (R3 ,×) and so(3)∗ ∼=
R3 via the natural pairing given by the Euclidean inner product, formula
(14.2.5) reads as follows for Π ∈ so(3)∗ and ξ,η ∈ so(3),

〈ξ
so(3)∗(Π),η〉 = −Π · (ξ × η) = −(Π× ξ) · η (14.2.6)

so that ξ
so(3)∗(Π) = −Π×ξ = ξ×Π. As expected, ξ

so(3)∗(Π) ∈ TΠ Orb(Π)
is tangent to the sphere Orb(Π). Allowing ξ to vary in so(3) ∼= R3 , one
obtains all of TΠ Orb(Π). �
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(b) Affine Group on R. Let (u, v) ∈ g and consider the coadjoint orbit

through the point
(
α
β

)
∈ g∗. Then (14.2.5) reads

(u, v)g∗
(
α
β

)
=
〈(

α
β

)
, [ · , (u, v)]

〉
. (14.2.7)

But
〈(

α
β

)
, [(r, s), (u, v)]

〉
=
〈(

α
β

)
, (0, rv − su)

〉
= rvβ − suβ,

and so

(u, v)g∗
(
α
β

)
=
(

vβ
−uβ

)
. (14.2.8)

If β 6= 0, these vectors span g∗ = R2 as they should. �

(c) The Group Diffvol. For G = Diffvol and M ∈ X∗div, we get the tan-
gent vectors to Orb(M) by differentiating (14.1.13) with respect to ϕ, yield-
ing

TM Orb(M) = {−£vM | v is divergence free and tangent to ∂Ω}.
(14.2.9)

�

(d) The Group Diffcan (P). For G = Diffcan(P ), we have

Tf Orb(f) = {−{f, k} | k ∈ F(P )}. (14.2.10)

�

(e) The Toda Lattice. The tangent space to the Toda orbit consists of
matrices of the same form as L in (14.1.21) since those matrices form a
linear space. The reader can check that (14.2.4) gives the same answer. �

14.3 The Symplectic Structure on Coadjoint
Orbits

Theorem 14.3.1 (Coadjoint Orbit Theorem). Let G be a Lie group
and let O ⊂ g∗ be a coadjoint orbit. Then O is a symplectic manifold. In
fact, there are unique symplectic forms ω± on O such that

ω±(µ)(ξg∗(µ), ηg∗(µ)) = ±〈µ, [ξ, η]〉 (14.3.1)

for all µ ∈ O and ξ, η ∈ g. We refer to ω± as the coadjoint orbit sym-
plectic structures and, if there is danger of confusion, denote it ω±O.
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Proof. We prove the result for ω−, the argument for ω+ being similar.
First we show that formula (14.3.1) gives a well-defined form; that is, the
right-hand side is independent of the particular ξ ∈ g and η ∈ g which
define the tangent vectors ξg∗(µ) and ηg∗(µ). This follows by observing that
ξg∗(µ) = ξ′

g∗(µ) implies −〈µ, [ξ, η]〉 = −〈µ, [ξ′, η]〉 for all η ∈ g. Therefore,
ω−(µ)(ξg∗ (µ), ηg∗(µ))〉 = ω−(ξ′

g∗(µ), ηg∗(µ)〉, so ω− is well defined.
Second, we show that ω− is nondegenerate. Since the pairing 〈 , 〉 is non-

degenerate, ω−(µ)(ξg∗(µ), ηg∗(µ)) = 0 for all ηg∗(µ) implies −〈µ, [ξ, η]〉 = 0
for all η. This means that 0 = −〈µ, [ξ, ·]〉 = ξg∗(µ).

Finally, we show that ω− is closed, that is dω− = 0. To do this we begin
by defining, for each ν ∈ g∗, the one-form νL on G by

νL(g) = (T ∗g Lg−1)(ν),

where g ∈ G. The one-form νL is readily checked to be left invariant; that
is L∗gνL = νL for all g ∈ G. For ξ ∈ g, let ξL be the corresponding left
invariant vector field on G, so νL(ξL) is a constant function on G (whose
value at any point is 〈ν, ξ〉). Choose ν ∈ O and consider the surjective map
ϕν : G → O defined by g 7→ Ad∗g−1(ν) and the two-form σ = ϕ∗νω

− on G.
We claim that

σ = dνL. (14.3.2)

To prove this, notice that

(Teϕν)(η) = ηg∗(ν) (14.3.3)

so that the surjective map ϕν is submersive at e. By definition of pull back,
σ(e)(ξ, η) equals

(ϕ∗νω
−)(e)(ξ, η) = ω−(ϕν(e))(Teϕν · ξ, Teϕν · η)

= ω−(ν)(ξg∗(ν), ηg∗(ν)) = −〈ν, [ξ, η]〉. (14.3.4)

Hence

σ(ξL, ηL)(e) = σ(e)(ξ, η) = −〈ν, [ξ, η]〉 = −〈νL, [ξL, ηL]〉(e). (14.3.5)

We shall need the relation σ(ξL, ηL) = −〈νL, [ξL, ηL]〉 at each point of G;
to get it, we first prove two lemmas. H

Is H

correct as
end-of-proof
symbols
for the
following
lemmas?
(wendy)

Lemma 14.3.2. Ad∗g−1 : O → O preserves ω−, that is, (Ad∗g−1)∗ω− =
ω−.

Proof. To prove this, we recall two identities from Chapter 9. First,

(Adg ξ)g∗ = Ad∗g−1 ◦ξg∗ ◦Ad∗g, (14.3.6)

. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 April 1998—14h10 . . . . . . . . . . . . . . . . . . . . . . . . . . .



440 14.3 The Symplectic Structure on Coadjoint Orbits

which is proved by letting ξ be tangent to a curve h(ε) at ε = 0, recalling
that

Adg ξ =
d

dε
gh(ε)g−1

∣∣∣∣
ε=0

(14.3.7)

and noting

(Adg ξ)g∗(µ) =
d

dε
Ad∗(gh(ε)g−1)−1 µ

∣∣∣∣
ε=0

=
d

dε
Ad∗g−1 Ad∗h(ε)−1 Ad∗g(µ)

∣∣∣∣
ε=0

. (14.3.8)

Second, we require the identity

Adg[ξ, η] = [Adg ξ,Adg η], (14.3.9)

which follows by differentiating the relation

Ig(Ih(k)) = Ig(h)Ig(k)Ig(h−1) (14.3.10)

with respect to h and k and evaluating at the identity.
Evaluating (14.3.6) at ν = Ad∗g−1 µ, we get

(Adg ξ)g∗(ν) = Ad∗g−1 ·ξg∗(µ) = Tµ Ad∗g−1 ·ξg∗(µ), (14.3.11)

by linearity of Ad∗g−1 . Thus,

((Ad∗g−1)∗ω−)(µ)(ξg∗ (µ), ηg∗(µ))

= ω−(ν)(Tµ Ad∗
g−1 ·ξg∗(µ), Tµ Ad∗

g−1 ·ηg∗(µ))

= ω−(ν)((Adg ξ)g∗(ν), (Adg η)g∗(ν)) (by (14.3.11))

= −〈ν, [Adg ξ,Adg η]〉 (by definition of ω−)
= −〈ν,Adg[ξ, η]〉 (by (14.3.9))

= −
〈
Ad∗g ν, [ξ, η]

〉
= −〈µ, [ξ, η]〉

= ω−(µ)(ξg∗ (µ), ηg∗(µ)). (14.3.12)

H

Lemma 14.3.3. σ is left invariant, that is, L∗gσ = σ for all g ∈ G.

Proof. Using the equivariance identity ϕν ◦Lg = Ad∗g−1 ◦ϕν , we compute

L∗gσ = L∗gϕ
∗
νω
− = (ϕν ◦ Lg)∗ω− = (Ad∗g−1 ◦ϕν)∗ω−

= ϕ∗ν(Ad∗g−1)∗ω− = ϕ∗νω
− = σ. H
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Lemma 14.3.4. σ(ξL, ηL) = −〈νL, [ξL, ηL]〉.

Proof. Both sides are left invariant and are equal at the identity by
(14.3.5). H

The exterior derivative dα of a one-form α is given in terms of the Jacobi–
Lie bracket by

(dα)(X,Y ) = X [α(Y )]− Y [α(X)]− α([X,Y ]). (14.3.13)

Since νL(ξL) is constant, ηL[νL(ξL)] = 0 and ξL[νL(ηL)] = 0, so Lemma 14.4.4
implies

σ(ξL, ηL) = (dνL)(ξL, ηL). (14.3.14)

Lemma 14.3.5.

σ = dνL. (14.3.15)

Proof. We shall prove that for any vector fields X and Y , σ(X,Y ) =
(dνL)(X,Y ). Indeed, since σ is left invariant,

σ(X,Y )(g) = (L∗g−1σ)(g)(X(g), Y (g))

= σ(e)(TLg−1 ·X(g), TLg−1 · Y (g))
= σ(e)(ξ, η) (where ξ = TLg−1 ·X(g) and η = TLg−1 · Y (g))
= σ(ξL, ηL)(e) = (dνL)(ξL, ηL)(e) (by (14.3.14))
= (L∗gdνL)(ξL, ηL)(e) (since νL is left invariant)

= (dνL)(g)(TLg · ξL(e), TLg · ηL(e))
= (dνL)(g)(TLg · ξ, TLg · η) = (dνL)(g)(X(g), Y (g))
= (dνL)(X,Y )(g). H

Since σ = dνL by Lemma 14.4.5, dσ = ddνL = 0, and so 0 = dϕ∗νω
− =

ϕ∗νdω
−. From ϕν ◦Lg = Ad∗g−1 ◦ϕν , it follows that submersivity of ϕν at e

is equivalent to submersivity of ϕν at any g ∈ G, that is, ϕν is a surjective
submersion. Thus, ϕ∗ν is injective, and hence dω− = 0.

Remark. Any Lie group carries a natural connection associated to the
left (or right) action. The calculation (14.3.13) is essentially the calculation
of the curvature of this connection and, as such, is closely related to the
Maurer–Cartan equations (see §9.1). �

Since coadjoint orbits are symplectic, we get the following:
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Corollary 14.3.6. Coadjoint orbits of finite-dimensional Lie groups are
even dimensional.

Corollary 14.3.7. Let Gν = {g ∈ G | Ad∗g−1 ν = ν} be the isotropy
subgroup of the coadjoint action of ν ∈ g∗. Then Gν is a closed subgroup of
G, and so the quotient G/Gν is a smooth manifold with smooth projection
π : G→ G/Gν ; g 7→ g ·Gν . We identify G/Gν ∼= Orb(ν) via the diffeomor-
phism ρ : g ·Gν ∈ G/Gν 7→ Ad∗g−1(ν) ∈ Orb(ν). Thus, G/Gν is symplectic,
with symplectic form ω− induced from dνL, that is,

dνL = π∗ρ∗ω−

(respectively, dνR = π∗ρ∗ω+).

As we shall see in Example (a) of §14.5, ω− is not exact in general, even
though π∗ρ∗ω− is.

Examples

(a) Rotation Group. Consider Orb(Π), the coadjoint orbit through
Π ∈ R3 ; then

ξR3(Π) = ξ ×Π ∈ TΠ(Orb(Π)), and ηR3(Π) = η ×Π ∈ TΠ(Orb(Π)),

and so with the usual identification of so(3) with R3 , the (–) coadjoint orbit
symplectic structure becomes

ω−(ξ
R3(Π),η

R3(Π)) = −Π · (ξ × η). (14.3.16)

Recall that the oriented area of the (planar) parallelogram spanned by two
vectors v,w ∈ R3 , is given by v×w (the numerical area is ‖v×w‖). Thus,
the oriented area spanned by ξ

R3(Π) and η
R3(Π) is (ξ ×Π)× (η ×Π) =

[(ξ ×Π) ·Π]η − [(ξ ×Π) · η]Π = Π(Π · (ξ × η)).
The area element dA on a sphere in R3 assigns to each pair (v,w) of

tangent vectors the number dA(v,w) = n · (v × w), where n is the unit
outward normal (this is the area of the parallelogram spanned by v and w,
taken “+” if v,w,n form a positively oriented basis and “−” otherwise).
For a sphere of radius ‖Π‖ and tangent vectors v = ξ×Π and w = η×Π,
we have

dA(ξ ×Π,η ×Π) =
Π
‖Π‖ · ((ξ ×Π)× (η ×Π))

=
Π
‖Π‖ · ((ξ ×Π) ·Π)η − ((ξ ×Π) · η)Π)

= ‖Π‖Π · (ξ × η). (14.3.17)

Thus,

ω− = − 1
‖Π‖dA. (14.3.18)
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The use of “dA” for the area element is, of course, a notational abuse since
this two-form cannot be exact. Likewise,

ω+ =
1
‖Π‖dA. (14.3.19)

Notice that ω+/‖Π‖ = (dA)/‖Π‖2 is the solid angle subtended by the area
element dA. �

(b) Affine Group on R. For β 6= 0, and µ =
(
α
β

)
on the open orbit

O, formula (14.3.1) gives

ω−(µ)((r, s)g∗(µ), (u, v)g∗(µ) = −
〈(

α
β

)
, [(r, s), (u, v)]

〉
= β(rv − su), (14.3.20)

or in coordinates, (q, p) ∈ R2 ,

ω−(µ) = βdq ∧ dp. (14.3.21)

�

(c) The Group Diffvol. For a coadjoint orbit of G = Diffvol(Ω) the (+)
coadjoint orbit symplectic structure at a point M becomes

ω+(M)(−£vM,−£wM) = −
∫

Ω

M · [v, w] dnx, (14.3.22)

where [v, w] is the Jacobi–Lie bracket. Note that we have indeed a minus
sign on the right-hand side of (14.3.22) since [v, w] is minus the left Lie
algebra bracket. �

Exercises

� Exercise 14.3-1. Let G be a Lie group. Find an action of G on T ∗G for
which the map J(ξ)(νL(g)) = −〈νL(g), ξL(g)〉 = −〈ν, ξ〉 is an equivariant
momentum map.

� Exercise 14.3-2. Relate the calculations of this section to the Mauer-
Cartan equations.

� Exercise 14.3-3. Give another proof that dω± = 0 by showing that
XH for ω± coincides with that for the Lie–Poisson bracket and hence that
Jacobi’s identity holds.

� Exercise 14.3-4 (The Group Diffcan). For a coadjoint orbit for G =
Diffcan(P ), show that the (+) coadjoint orbit symplectic structure is

ω+(f)({k, f}, {h, f}) =
∫
P

f{k, h} dq dp.
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444 14.4 The Orbit Bracket via Restriction of the Lie–Poisson Bracket

� Exercise 14.3-5 (The Toda Lattice). For the Toda orbit, check that
the orbit symplectic structure is

ω+(f) =
n−1∑
i=1

1
ai

dbi ∧ dai. (14.3.23)

14.4 The Orbit Bracket via Restriction of
the Lie–Poisson Bracket

Theorem 14.4.1 (Lie–Poisson-Coadjoint Orbit Compatibility).
The Lie–Poisson bracket and the coadjoint orbit symplectic structure are
consistent in the following sense: for F,H : g∗ → R and O a coadjoint orbit
in g∗,

{F,H}+|O = {F |O,H|O}+. (14.4.1)

Here, the bracket {F,G}+ is the (+) Lie–Poisson bracket, while the bracket
on the right-hand side of (14.4.1) is the Poisson bracket defined by the (+)
coadjoint orbit symplectic structure on O. Similarly,

{F,H}−|O = {F |O,H|O}−. (14.4.2)

The following box summarizes the basic content of what the theorem
says.

Two Approaches to the Lie–Poisson Bracket

There are two different ways to produce the same Lie–Poisson bracket
{F,H}− (respectively, {F,H}+) on g∗: Check

rewording,
changed due
to overflow
(wendy)

Extension Method:

1. Take F,H : g∗ → R;

2. extend F,H to FL,HL : T ∗G→ R by left (respectively, right) invari-
ance;

3. take the bracket {FL,HL} with respect to the canonical symplectic
structure on T ∗G; and

4. restrict: {FL,HL}|g∗ = {F,H}− (respectively, {FR,HR}|g∗ = {F,H}+).
overflow!
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Restriction Method:

1. Take F,H : g∗ → R;

2. form the restrictions F |O,H|O to a coadjoint orbit; and

3. take the Poisson bracket {F |O,H|O}− with respect to the − (re-
spectively, +) orbit symplectic structure ω− (respectively, ω+) on
the orbit O: for µ ∈ O we have

{F |O,H|O}−(µ) = {F,H}−(µ).

Proof of Theorem 14.6.1. Let µ ∈ O. By definition,

{F,H}−(µ) = −
〈
µ,

[
δF

δµ
,
δH

δµ

]〉
. (14.4.3)

On the other hand,

{F |O,H|O}−(µ) = ω−(XF , XH)(µ), (14.4.4)

where XF and XH are the Hamiltonian vector fields on O generated by
F |O and H|O, and ω− is the minus orbit symplectic form. Recall that the
Hamiltonian vector field XF on g∗− is given by

XF (µ) = ad∗ξ(µ), (14.4.5)

where ξ = δF/δµ ∈ g.
Motivated by this we prove the following:

Lemma 14.4.2. Using the orbit symplectic form ω−, for µ ∈ O we have

XF |O(µ) = ad∗δF/δµ(µ). (14.4.6)

�

Proof. Let ξ, η ∈ g, so (14.3.1) gives

ω−(µ)(ad∗ξ µ, ad∗η µ) = −〈µ, [ξ, η]〉 = 〈µ, adη(ξ)〉 = 〈ad∗η(µ), ξ〉. (14.4.7)

Letting ξ = δF/δµ and η be arbitrary, we get

ω−(µ)(ad∗δF/δµ µ, ad∗η µ) =
〈

ad∗η µ,
δF

δµ

〉
= dF (µ) · ad∗η µ. (14.4.8)

Thus, XF |O(µ) = ad∗δF/δµ µ, as required. H
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To complete the proof of Theorem 14.6.1, note that

{F |O,H|O}−(µ) = ω−(µ)(XF |O(µ), XH|O(µ))

= ω−(µ)(ad∗δF/δµ µ, ad∗δH/δµ µ)

= −
〈
µ,

[
δF

δµ
,
δH

δµ

]〉
= {F,H}−(µ). (14.4.9)

check this

CorollaryCorollary 14.4.3. (i) For H ∈ F(g∗), the trajectory of XH starting
at µ stays in Orb(µ).

(ii) A function C ∈ F(g∗) is a Casimir iff δC/δµ ∈ gµ for all µ ∈ g∗.

(iii) If C ∈ F(g∗) is Ad∗-invariant (constant on orbits) then C is a
Casimir. The converse is also true if all coadjoint orbits are con-
nected.

Proof.
Part (i) follows from the fact thatXH(ν) is tangent to the coadjoint orbitO
for ν ∈ O, since XH(ν) = ad∗δH/δµ(ν). Part (ii) follows from the definitions
and formula (14.4.5), and (iii) follows from (ii) by writing out the condition
of Ad∗-invariance as C(Ad∗g−1 µ) = C(µ) and differentiating in g at g = e.

The converse is proved in the following way. If P is a Poisson mani-
fold, S ⊂ P is a symplectic leaf, and C is a Casimir function, then C
is necessarily constant on S. Indeed, if C were not locally a constant on
S, then there would be a point z ∈ S such that dC(z) · v 6= 0 for some
v ∈ TzS. But TzS is spanned by Xk(z) for k varying over F(P ) and hence
dC(z) ·Xk(z) = {C, k}(z) = 0. Therefore, dC(z) · v = 0, a contradiction.
Thus, C is locally constant on S and hence constant, by connectedness of
the leaf S. In particular, if all coadjoint orbits of a Lie group G in g∗ are
connected, then a Casimir function C is constant on each orbit and hence
Ad∗-invariant. �

To illustrate part (iii), we note that for G = SO(3), the function

CΦ(Π) = Φ
(

1
2
‖Π‖2

)
is invariant under the coadjoint action (A,Π) 7→ AΠ and is therefore a
Casimir function. Another example is given by G = Diffcan(P ), and the
functional

CΦ(f) :=
∫
P

Φ(f) dq dp,

where dq dp is the Liouville measure and Φ is any function of one vari-
able. This is a Casimir since it is Ad∗-invariant by the change of variables
formula.
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In general, Ad∗-invariance of C is a stronger condition than C being a
Casimir function. Indeed if C is Ad∗-invariant, differentiating the relation
C(Ad∗g−1 µ) = C(µ) relative to µ rather than g as we did in the proof of
(iii), we get

δC

δ(Ad∗g−1 µ)
= Adg

δC

δµ
(14.4.10)

for all g ∈ G. Taking g ∈ Gµ, this relation becomes δC/δµ = Adg(δC/δµ),
that is, δC/δµ belongs to the centralizer of Gµ in g, that is, to the set

Cent(Gµ, g) := {ξ ∈ g | Adg ξ = ξ for all g ∈ Gµ}.

Letting

Cent(gµ, g) := {ξ ∈ g | [η, ξ] = 0 for all η ∈ gµ}

denote the centralizer of gµ in g, we see by differentiating the relation
defining Cent(Gµ, g) with respect to g at the identity, that Cent(Gµ, g) ⊂
Cent(gµ, g). Thus, if C is Ad∗-invariant, then

δC

δµ
∈ gµ ∩ Cent(gµ, g) = Cent(gµ) = the center of gµ.

Proposition 14.4.4 (Kostant [1979]). If C is an Ad∗-invariant func-
tion on g∗, then δC/δµ lies in both Cent(Gµ, g) and in Cent(gµ). If C is a
Casimir function, then δC/δµ lies in the center of gµ.

Proof. The preceding calculations prove the first statement. The last
statement follows from the observation that if C is a Casimir function forG,
it is also one for G0, the connected component of the identity, and so from
XXX 14.6.3iii it is G0-Ad∗-invariant, so the first statement applies. �

By the theorem of Duflo and Vergne [1969] (see Chapter 9), for generic
µ ∈ g∗, the coadjoint isotropy gµ is abelian and therefore Cent(gµ) = gµ
generically. The above corollary and proposition leave open, in principle,
the possibility of non-Ad∗-invariant Casimir functions on g∗. This is not
possible for Lie groups with connected coadjoint orbits, as we saw before.
It is also not possible for semisimple Lie groups since any Casimir function
is a functional of the basis of the ring of invariants. If C : g∗ → R is a
function such that δC/δµ ∈ gµ for all µ ∈ g∗, but there is at least one
ν ∈ g∗ such that δC/δν /∈ Cent(gν), then C is a Casimir function that is
not Ad∗-invariant. This element ν ∈ g∗ must be such that its coadjoint
orbit is disconnected, it must be nongeneric, and g must be non-semisimple.
We know of no such example of a Casimir function.

On the other hand, the above statements provide easily verifiable crite-
ria for the form or the nonexistence of Casimir functions on duals of Lie
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algebras. For example, if g∗ has open orbits whose union is dense, it cannot
have Casimir functionals. Indeed, any Casimir would have to be constant
on each orbit, and thus by continuity, on g∗. An example of such a Lie
algebra is that of the affine group on the line discussed in Example (b) of
§14.1. The same argument shows that Lie algebras with at least one dense
orbit have no Casimir functionals.

Let us use Corollary 14.6.3 to determine all Casimir functions for the Lie
algebra in Example (f) of §14.1. If

µ =

 iu 0 0
0 iαu 0
a b 0

 ∈ g∗, ξ =

 is 0 x
0 iαs y
0 0 0

 ∈ g,

for a, b, x, y ∈ C , u, s ∈ R, then it is straightforward to check that

ad∗ξ µ =

 iu′′ 0 0
0 iαu′′ 0
−ixa −iαsb 0

 for u′′ =
1

1 + α2
Im(ax+ αbxy).

Thus, if at least one of a, b is not zero, then

gµ =


 0 0 x

0 0 y
0 0 0

∣∣∣∣∣∣ Im(ax+ αby) = 0

 ,

whereas if a = b = 0, then gµ = g. For C : g∗ → R denote by

δC

δµ
=

 iCu 0 Ca
0 iαCu Cb
0 0 0

 ,
where Cu ∈ R, Ca , Cb ∈ C are the partial derivatives of C relative to the
variables u, a, b. Thus, the condition δC/δµ ∈ gµ for all µ implies that
Cu = 0, that is, C is independent of u and

Im(aCa + αbCb) = 0.

The same condition could have been obtained by lengthier direct cal-
culations involving the Lie–Poisson bracket. Here are the highlights. The
commutator bracket on g is given by is 0 x

0 iαs y
0 0 0

 ,
 iu 0 z

0 iαu w
0 0 0

 =

 0 0 i(sz − ux)
0 0 iα(sw − uy)
0 0 0

 ,
so that for µ ∈ g∗ parametrized by u ∈ R, a, b,∈ C , we have

{F,H} (µ) = −Re Tr
(
µ

[
δF

δµ
,
δH

δµ

])
= Im[a(FuHa −HuFa) + αb(FuHb −HuFb)].
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Taking Fu = Fb = 0 in {F,C} = 0, forces Cu = 0. Then the remaining
condition reduces to Im(aCa + αbCb) = 0.

We solve this partial differential equation by the method of characteris-
tics. Let a = x+ iy, b = u+ iv so that Ca = Cx + iCy, Cb = Cu + iCv, and
we get

xCy + yCx + αvCu + αuCv = 0.

The flow of the vector field with components (y, x, αv, αu) is given by

Ft(x, y, u, v) =
(
x cosh t+ y sinh t, x sinh t+ y cosh t,

u coshαt+ v sinhαt, u sinhαt+ v coshαt
)

and thus any function C = f(x2 − y2, u2 − v2) is constant on this flow.
Therefore, these functions are all Casimir functionals for g∗.

One mathematical reason coadjoint orbits and the Lie–Poisson bracket
are so important is that every Hamiltonian space is (a covering of) a coad-
joint orbit. This is proved below.

IfX and Y are topological spaces, a continuous surjective map p : X → Y
is called a covering map if every point in Y has an open neighborhood
U such that p−1(U) is a disjoint union of open sets in X, called the decks
over U. Note that each deck is homeomorphic to U by p. If p : M →
N is a surjective proper map of smooth manifolds which is also a local
diffeomorphism, then it is a covering map. For example, SU(2) (the spin
group) forms a covering space of SO(3) with two decks over each point and
SU(2) is simply connected while SO(3) is not. (See Chapter 9.)

Transitive Hamiltonian actions have been characterized by Lie, Kostant,
Kirillov, and Souriau in the following manner (see Kostant [1966]):

Theorem 14.4.5 (Kostant’s Coadjoint Orbit Covering Theorem).
Let P be a Poisson manifold and let Φ : G × P → P be a left, transitive,
Hamiltonian action with equivariant momentum map J : P → g∗. Then

(i) J : P → g∗+ is a canonical submersion onto a coadjoint orbit of G in
g∗.

(ii) If P is symplectic, J is a symplectic local diffeomorphism onto a coad-
joint orbit endowed with the “+” orbit symplectic structure. If J is
also proper, then it is a covering map.

Proof. (i) That J is a canonical map was proved in §12.5. Since Φ is
transitive, choosing a z0 ∈ P, any z ∈ P can be written as z = Φg(z0)
for some g ∈ G. Thus, by equivariance

J(P ) = {J(z) | z ∈ P} = {J(Φg(z0)) | g ∈ G}
= {Ad∗g−1 J(z0) | g ∈ G} = Orb(J(z0)).
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Again by equivariance, for z ∈ P we have TzJ(ξP (z)) = − ad∗ξ J(z),
which has the form of a general tangent vector at J(z) to the orbit
Orb(J(z0)); thus, J is a submersion.

(ii) If P is symplectic with symplectic form Ω,J is a symplectic map if the
orbit has the “+” symplectic form: ω+(µ)(ad∗ξ µ, ad∗η µ) = 〈µ, [ξ, η]〉.
This is seen in the following way. Since TzP = {ξP (z) | ξ ∈ g} by
transitivity of the action,

(J∗ω+)(z)(ξP (z), ηP (z)) = ω+(J(z))(TzJ(ξP (z)), TzJ(ηP (z)))

= ω+(J(z))(ad∗ξ J(z), ad∗η J(z))

= 〈J(z), [ξ, η]〉 = J([ξ, η])(z)
= {J(ξ), J(η)}(z) (by equivariance)
= Ω(z)(XJ(ξ)(z), XJ(η)(z))
= Ω(z)(ξP (z), ηP (z)), (14.4.11)

which shows that J∗ω+ = Ω, that is, J is symplectic. Since any
symplectic map is an immersion, J is a local diffeomorphism. If J is
also proper, it is a symplectic covering map, as discussed above.

�

If J is proper and the symplectic manifold P is simply connected, the
covering map in (ii) is a diffeomorphism; this follows from classical theorems
about covering spaces (Spanier [1966]). It is clear that if Φ is not transitive,
J(P ) is a union of coadjoint orbits. See Guillemin and Sternberg [1984] and
Grigore and Popp [1989] for more information.

Exercises

� Exercise 14.4-1. Show that if C is a Casimir function on a Poisson
manifold, then {F,K}C = C{F,K} is also a Poisson structure.

14.5 The Special Linear Group on the Plane
Jerry to
rewrite
based on his
class notes

In the Lie algebra sl(2,R) of traceless real 2 × 2 matrices, introduce the
basis

e =
[

0 1
0 0

]
, f =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
.

Note that [h, e] = 2e, [h, f ] = −2f , and [e, f ] = h. Identify sl(2,R) with R3

via

xe + yf + zh ∈ sl(2,R) 7→ (x, y, z) ∈ R
3 . (14.5.1)
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14.5 The Special Linear Group on the Plane 451

The nonzero structure constants are c312 = 1, c113 = −2, and c223 = 2. We
identify the dual space sl(2,R)∗ with R3 via the map

α ∈ sl(2,R)∗ 7→ (a, b, c) ∈ R
3 , (14.5.2)

where (a, b, c) ∈ R3 is uniquely determined by the equality

〈α, xe + yf + zh〉 = ax+ by + cz, i.e., α(e) = a, α(f) = b, α(h) = c.
(14.5.3)

One calculates that the (±) Lie–Poisson bracket of sl(2,R)∗ induces the
following Poisson brackets on R3 : {c, a} = 2a (respectively, −2a), {c, b} =
−2b (respectively, +2b), {a, b} = c (respectively, −c), that is,

{F,G}±(a, b, c) = ∓2a
(
∂F

∂a

∂G

∂c
− ∂F

∂c

∂G

∂a

)
± 2b

(
∂F

∂b

∂G

∂c
− ∂F

∂c

∂G

∂b

)
± c

(
∂F

∂a

∂G

∂b
− ∂F

∂b

∂G

∂a

)
. (14.5.4)

Any Casimir function of R3 endowed with the (±) Lie–Poisson bracket of
sl(2,R)∗ is of the form

C(a, b, c) = Φ
(
ab+

1
4
c2
)

(14.5.5)

for a C1 function Φ : R → R. Thus, the symplectic leaves are the sheets of
the hyperboloids

C0(a, b, c) :=
1
2

(
ab+

1
4
c2
)

= constant 6= 0, (14.5.6)

the two nappes (without vertex) of the cone ab + (1/4)c2 = 0, and the
origin. The orbit symplectic structure on these hyperboloids is given by

ω−(a, b, c)(ad∗(x,y,z)(a, b, c), ad∗(x′,y′,z′)(a, b, c))

= −a(2zx′ − 2xz′)− b(2yz′ − 2zy′)− c(xy′ − yx′)

= − 1
‖∇C0(a, b, c)‖ (area element of the hyperboloid). (14.5.7)

To prove the last equality in (14.5.7), use the formulae

ad∗(x,y,z)(a, b, c) = (2az − cy, cx− 2bz, 2by− 2zx),

ad∗(x,y,z)(a, b, c)× ad∗(x′,y′,z′)(a, b, c)

=
(
2bc(xy′ − yx′) + 4b2(yz′ − zy′) + 4ab(zx′ − xz′),
2ac(xy′ − yx′) + 4ab(yz′ − zy′) + 4a2(zx′ − xz′),
c2(xy′ − yx′) + 2bc(yz′ − zy′) + 2ac(zx′ − xz′)

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 April 1998—14h10 . . . . . . . . . . . . . . . . . . . . . . . . . . .



452 14.6 The Euclidean Group of the Plane

and the fact that ∇(ab+ 1
4c

2) = (b, a, 1
2c) is normal to the hyperboloid to

get, as in (14.3.18),

dA(a, b, c)(ad∗(x,y,z)(a, b, c), ad∗(x′,y′,z′)(a, b, c))

=
(b, a, 1

2c)
‖(b, a, 1

2c)‖
· (ad∗(x,y,z)(a, b, c)× ad∗(x′,y′,z′)(a, b, c))

= −‖∇C0(a, b, c)‖)ω−(a, b, c)(ad∗(x,y,z)(a, b, c), ad∗(x′,y′,z′)(a, b, c)).

14.6 The Euclidean Group of the Plane

We use the notation and terminology from Exercise 11.5-2. Recall that
se(2)∗ is isomorphic to R3 with the bracket.

[(ω, v1, v2), (ζ, w1, w2)] = (0, ζv2 − ωw2, ωw1 − ζv1)

= (0, ωJTw − ζJTv), (14.6.1)

where v = (v1, v2),w = (w1, w2) and

J =
[

0 1
−1 0

]
, J

t = J
−1 = −J. (14.6.2)

Thus, se(2)∗ is identified with R3 via the dot product. Therefore, if F :
se(2)∗ ∼= R × R2 → R, its functional derivative is

δF

δ(µ, α)
=
(
∂F

∂µ
,∇αF

)
, (14.6.3)

where (µ, α) ∈ se(2)∗ ∼= R × R2 and ∇αF denotes the gradient of F with
respect to α. The (±) Lie–Poisson structure on se(2)∗ is given by

{F,G}±(µ, α) = ±
(
∂F

∂µ
Jα · ∇αG−

∂G

∂µ
Jα ·OαF

)
. (14.6.4)

One also checks that functions on se(2)∗, of the form

C(µ, α) = Φ
(

1
2
‖α‖2

)
(14.6.5)

for a (smooth) function Φ : [0,∞[→ R, are Casmir functions and that the
symplectic leaves of se(2)∗ are the cylinders

{(µ, α) ∈ R3 | ‖α‖ = constant 6= 0} (14.6.6)

and the points on the µ-axis.
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14.6 The Euclidean Group of the Plane 453

On the coadjoint orbit representing a cylinder about the µ-axis, the orbit
symplectic structure is

ω(µ, α)(ad(ξ,u)∗(µ, α), ad(η,v)∗(µ, α))
= ±(ξJα · v− ηJα · u)
= ±(area element dA on the cylinder)/‖α‖. (14.6.7)

The last equality is proved in the following way. Since

ad(ξ,u)∗(µ, α) = (−Jα · u, ξJα) (14.6.8)

and the outward unit normal to the cylinder is (0, α)/‖α‖, the area element
dA is given by

dA(µ, α)((−Jα · u, ξJα), (−Jα · v, ηJα))

=
(0, α)
‖α‖ · [((−Jα · u, ξJα)× (−Jα · u, ξJα)]

= ‖α‖(ξJα · v− ηJα · u).
We need to
prove by hand
that the coad-
joint orbits
of se(2)∗,
which we
know already
are cylinders
topologically,
are in fact
symplectically
T ∗S1’s. That
is, there are
no magnetic
terms—but we
need to do it
by hand, not
by reduction!

The Poisson structures of so(3)∗, sl(2,R)∗ , and se(2)∗ fit together in a
larger Poisson manifold. Weinstein [1983b] considers for every ε ∈ R the
Lie algebra gε with abstract basis X1,X2,X3 and relations

[X3,X1] = X2, [X2,X3] = X1, [X1,X2] = εX3. (14.6.9)

If ε > 0, the map

X1 7→
√
ε(1, 0, 0)∧, X2 7→

√
ε(0, 1, 0)∧, X3 7→

√
ε(0, 0, 1)∧, (14.6.10)

defines an isomorphism of gε with so(3), while if ε = 0, the map

X1 7→ (0, 0,−1), X2 7→ (0,−1, 0), X3 7→ (−1, 0, 0), (14.6.11)

defines an isomorphism of g0 with se(2), and if ε < 0, the map

X1 7→
√
−ε
2

[
1 0
0 −1

]
, X2 7→

√
−ε
2

[
1 0
0 1

]
, X3 7→

1
2

[
0 −1
1 0

]
,

(14.6.12)

defines an isomorphism of gε with sl(2,R).
The (+) Lie–Poisson structure of g∗ε is given by the bracket relations

{x3, x1} = x2, {x2, x3} = x1, {x1, x2} = εx3, (14.6.13)

for the coordinate functions xi ∈ g∗ε = R3 , 〈xi, xj〉 = δij .
In R4 with coordinate functions (x1, x2, x3, ε) consider the above bracket

relations plus {ε, x1} = {ε, x2} = {ε, x3} = 0. This defines a Poisson
structure on R4 which is not of Lie–Poisson type. The leaves of this Poisson
structure are all two dimensional in the space (x1, x2, x3) and the Casimir
functions are all functions of x2

1 + x2
2 + εx2

3 and ε. The inclusion of g∗ε in
R4 with the above Poisson structure is a canonical map. The leaves of R4

with the above Poisson structure as ε passes through zero is given in Figure
14.8.1.
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454 14.7 The Euclidean Group of Three-Space

Π1

Π2

Π3

α1

α2

µ

a

b

c

ε > 0 ε = 0 ε < 0

Figure 14.6.1. The orbit structure for so(3)∗, se(3)∗, and sl(2,R)∗ .

14.7 The Euclidean Group of Three-Space

The Euclidean Group, its Lie Algebra and its Dual. An element
of SE(3) is a pair (A,a) where A ∈ SO(3) and a ∈ R3 ; the action of SE(3)
on R3 is the rotation A followed by translation by the vector a and has the
expression

(A,a) · x = Ax + a. (14.7.1)

Using this formula, one sees that multiplication and inversion in SE(3) are
given by

(A,a)(B,b) = (AB,Ab + a) (14.7.2)

and

(A,a)−1 = (A−1,−A−1a), (14.7.3)

for A,B ∈ SO(3) and a,b ∈ R3 . The identity element is (l,0). Note that
SE(3) embeds into SL(4;R) via the map

(A,a) 7→
[

A a
0 1

]
; (14.7.4)
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14.7 The Euclidean Group of Three-Space 455

thus one can operate with SE(3) as one would with matrix Lie groups
by using this embedding. In particular, the Lie algebra se(3) of SE(3) is
isomorphic to a Lie subalgebra of sl(4;R) with elements of the form[

x̂ y
0 0

]
, where x,y ∈ R

3 , (14.7.5)

and a Lie algebra bracket equal to the commutator bracket of matrices.
This shows that the Lie bracket operation on se(3) is given by

[(x,y), (x′,y′)] = (x× x′,x× y′ − x′ × y). (14.7.6)

Since [
A a
0 1

]−1

=
[

A−1 −A−1a
0 1

]
and[

A a
0 1

] [
x̂ y
0 0

][
A−1 −A−1a

0 1

]
=
[

Ax̂A−1 −Ax̂A−1a + Ay
0 0

]
,

we see that the adjoint action of SE(3) on se(3) has the expression

Ad(A,a)(x,y) = (Ax,Ay −Ax× a). (14.7.7)

The (6× 6)-matrix of Ad(A,a) is given by[
A 0
âA A

]
. (14.7.8)

Identifying the dual of se(3) with R3×R3 by the dot product in every factor,
it follows that the matrix of Ad∗(A,a)−1 is given by the inverse transpose of
the (6× 6)-matrix (14.7.8), that is, it equals[

A âA
0 A

]
. (14.7.9)

Thus, the coadjoint action of SE(3) on se(3)∗ = R3 ×R3 has the expression

Ad∗(A,a)−1(u,v) = (Au + a×Av,Av). (14.7.10)

(This Lie algebra is a semidirect product and all formulae derived here
“by hand” are special cases of general ones that may be found in works
on semidirect products; see, for example, Marsden, Ratiu, and Weinstein
[1984a,b].)
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456 14.7 The Euclidean Group of Three-Space

Coadjoint Orbits in se(3)∗. Let {e1, e2, e3, f1, f2, f3} be an orthonormal
basis of se(3) = R3 × R3 such that ei = fi, i = 1, 2, 3. The dual basis of
se(3)∗ via the dot product is again {e1, e2, e3, f1, f2, f3}. Let e and f denote
arbitrary vectors satisfying e ∈ span{e1, e2, e3} and f ∈ span{f1, f2, f3}.
For the coadjoint action the only zero-dimensional orbit is the origin. Since
se(3) is six dimensional, there can also be two- and four-dimensional coad-
joint orbits. These in fact occur and fall into three types.

Type I: The orbit through (e,0) equals

SE(3) · (e,0) = {(Ae,0) | A ∈ SO(3)} = S2
‖e‖, (14.7.11)

the two-sphere of radius ‖e‖.

Type II: The orbit through (0, f)

SE(3) · (0, f)

= {(a×Af ,Af)|A ∈ SO(3),a ∈ R3}
= {(u,Af)|A ∈ SO(3),u ⊥ Af} = TS2

‖f‖, (14.7.12)

the tangent bundle of the two-sphere of radius ‖f‖; note the vector part is
in the first slot.

Type III: The orbit through (e, f), where e, f 6= 0, equals

SE(3) · (e, f) = {(Ae + a×Af ,Af) | A ∈ SO(3),a ∈ R
3}. (14.7.13)

We will prove below that this orbit is diffeomorphic to TS2
‖f‖. Consider the

smooth map

ϕ : (A,a) ∈ SE(3) 7→
(

Ae + a×Af − e · f
‖f‖2 Af ,Af

)
∈ TS2

‖f‖ (14.7.14)

which is right invariant under the isotropy group

SE(3)(e,f) = {(B,b) | Be + b× f = e, Bf = f} (14.7.15)

(see (14.7.10)), that is,

ϕ((A,a)(B,b)) = ϕ(A,a)

for all (A,a) ∈ SE(3) and (B,b) ∈ SE(3)(e,f). Thus, ϕ induces a smooth
map ϕ̄ : SE(3)/ SE(3)(e,f) → TS2

‖f‖. The map ϕ̄ is injective, for if ϕ(A,a) =
ϕ(A′,a′), then

(A,a)−1(A′,a′) = (A−1A′,A−1(a′ − a)) ∈ SE(3)(e,f)
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14.7 The Euclidean Group of Three-Space 457

as is easily checked. To see that ϕ (and hence ϕ̄ ) is surjective, let (u,v) ∈
TS2
‖f‖, that is, ‖v‖ = ‖f‖ and u · v = 0. Then choose an A ∈ SO(3) such

that Af = v and let a = [v× (u−Ae)]/‖f‖2. It is then straightforward to
check that ϕ(A,a) = (u,v) by (14.7.14). Thus, ϕ̄ is a bijective map. Since
the derivative of ϕ at (A,a) in the direction T(I,0)L(A,a)(x̂,y) = (Ax̂,Ay)
equals

T(A,a)ϕ(Ax̂,Ay) =
d

dt

∣∣∣∣
t=0

ϕ(Aetx̂,a + tAy)

= (A(x× e + y× f) + a×A(x× f)

− e · f
‖f‖2 A(x× f),A(x× f)) (14.7.16)

we see that its kernel consists of left translates by (A,a) of

{(x,y) ∈ se(3) | x× e + y× f = 0,x× f = 0}. (14.7.17)

However, taking the derivatives of the defining relations in (14.7.15) at
(B,b) = (l,0) we see that (14.7.17) coincides with se(3)(e,f). This shows
that ϕ is an immersion and hence, since dim(SE(3)/ SE(3)(e,f)) = dimTS2

‖f‖
= 4, it follows that ϕ is a local diffeomorphism. Therefore, ϕ is a diffeo-
morphism.

To compute the tangent spaces to these orbits, we use Proposition 14.2.1
which states that the annihilator of the coadjoint isotropy subalgebra at µ
equals TµO. The coadjoint action of the Lie algebra se(3) on its dual se(3)∗

is computed to be

ad∗(x,y)(u,v) = (u× x + v× y,v × x). (14.7.18)

Thus, the isotropy subalgebra se(3)(u,v) is given again by (14.7.17), that is,
it equals {(x,y) ∈ se(3) | u × x + v × y = 0,v × x = 0}. Let O denote a
nonzero coadjoint orbit in se(3)∗. Then the tangent space at a point in O
is given as follows for each of the three types of orbits:

Type I: Since

se(3)(e,0) = {(x,y) ∈ se(3) | e× x = 0} = span(e)× R
3 , (14.7.19)

it follows that the tangent space to O at (e,0) is the tangent space to the
sphere of radius ‖e‖ at the point e in the first factor.

Type II: Since

se(3)(0,f) = {(x,y) ∈ se(3) | f × y = 0, f × x = 0}
= span(f) × span(f), (14.7.20)
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458 14.7 The Euclidean Group of Three-Space

it follows that the tangent space to O at (0, f) equals f⊥ × f⊥, where f⊥

denotes the plane perpendicular to f .

Type III: Since

se(3)(e,f) = {(x,y) ∈ se(3) | e× x + f × y = 0 and f × x = 0}
= {(c1f , c1e + c2f) | c1, c2 ∈ R}, (14.7.21)

the tangent space at (e, f) to O is the orthogonal complement of the space
spanned by (f , e) and (0, f), that is, it equals

{(u,v) | u · f + v · e = 0 and v · f = 0}.

The Symplectic Form on Orbits. Let O denote a nonzero orbit of
se(3)∗. We consider the different oribt types separately, as above.

Type I: If O contains a point of the form (e,0), the orbit O equals
S2
‖e‖ × {0}. The minus orbit symplectic form is

ω−(e,0)(ad∗(x,y)(e,0), ad∗(a,b)(e,0)) = −e · (x× x′). (14.7.22)

Thus, the symplectic form on O at (e,0) is −1/‖e‖ times the area element
of the sphere of radius ‖e‖ (see (14.3.16) and (14.3.18)).

Type II: If O contains a point of the form (0, f), then O equals TS2
‖f‖.

Let (u,v) ∈ O, that is, ‖v‖ = ‖f‖ and u ⊥ v. The symplectic form in this
case is

ω−(u,v)(ad∗(x,y)(u,v), ad∗(a,b)(u,v))

= −u · (x× x′)− v · (x× y′ − x′ × y). (14.7.23)

We shall prove below that this form is exact, namely, ω− = −dθ, where

θ(u,v) · ad∗(x,y)(u,v) = u · x. (14.7.24)

First, note that θ is indeed well defined, for if

ad∗(x,y)(u,v) = ad∗(x′,y′)(u,v),

by (14.7.18) we have (x−x′)×v = 0, that is, x−x′ = cv for some constant
c ∈ R, and since u⊥v, we conclude from here that u · x = u · x′. Second,
in order to compute dθ, we shall use the formula

dθ(X,Y ) = X [θ(Y )]− Y [θ(X)]− θ([X,Y ])

for any vector fields X,Y on O. Third, we shall choose X and Y as follows:

X(u,v) = (x,y)se(3)∗(u,v) = − ad∗(x,y)(u,v),

Y (u,v) = (x′,y′)se(3)∗(u,v) = − ad∗(x′,y′)(u,v),
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for fixed x,y,x′,y′ ∈ R3 . Fourth, to compute X [θ(Y )](u,v), consider the
path

(u(ε),v(ε)) = (e−εx̂u + ε(v× y), e−εx̂v),

which satisfies (u(0),v(0)) = (u,v) and

(u′(0),v′(0)) = (u× x + v× y,v × x) = ad∗(x,y)(u,v).

Then

X [θ(Y )](u,v) =
d

dε

∣∣∣∣
ε=0

θ(Y )(u(ε),v(ε))

=
d

dε

∣∣∣∣
ε=0

u(ε) · x′ = (u× x + v × y) · x′.

Similarly, Y [θ(X)](u,v) = (u× x′ + v× y′) · x. Finally,

[X,Y ](u,v) = [(x,y)se(3)∗ , (x′,y′)se(3)∗ ](u,v)
= −[(x,y), (x′,y′)]se(3)∗(u,v)
= −(x× x′,x× y′ − x′ × y)se(3)∗(u,v)
= ad∗(x×x′,x×y′−x′×y)(u,v).

Therefore,

− dθ(u,v)(ad∗(x,y)(u,v), ad∗(x′,y′)(u,v))

= −X [θ(Y )](u,v) + Y [θ(X)](u,v) + θ([X,Y ])(u,v)
= −(u× x + v× y) · x′ + (u× x′ + v× y′) · x + u · (x× x′)
= −u · (x× x′)− v · (x× y′ − x′ × y),

which coincides with (14.7.23).
The form θ given by (14.7.24) is the canonical symplectic structure when

we identify TS2
‖f‖ with T ∗S2

‖f‖ using the Euclidean metric.

Type III: If O contains (e, f), where e 6= 0 and f 6= 0, then O is
diffeomorphic to T ∗S2

‖f‖ in the following way. The map ϕ : SE(3)→ T ∗S2
‖f‖

given by (14.7.14) induces a diffeomorphism

ϕ : SE(3)/ SE(3)(e,f) → T ∗S2
‖f‖.

However, the orbit O through (e, f) is diffeomorphic to SE(3)/ SE(3)(e,f)

by the diffeomorphism

(A,a) 7→ Ad∗(A,a)−1(e, f). (14.7.25)
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Therefore, the diffeomorphism Φ : O → T ∗S2
‖f‖ is given by

Φ(Ad∗(A,a)−1(e, f)) = Φ(Ae + a×Af ,Af) (14.7.26)

= (Ae + a×Af − e · f
‖f‖2 Af ,Af).

If (u,v) ∈ O, the orbit symplectic structure is given by formula (14.7.23),
where u = Ae + a×Af ,v = Af for some A ∈ SO(3),a ∈ R3 . Let

u = Ae + a×Af − e · f
‖f‖2 Af = u− e · f

‖f‖2 v,

v = Af = v, (14.7.27)

the pair of vectors (u,v) representing an element of TS2. Note that ‖v‖ =
‖f‖ and u · v = 0. Then a tangent vector to TS2

‖f‖ at (u,v) can be rep-
resented as ad∗(x,y)(u,v) = (u × x + v × y,v × x) so that by (14.7.26) we
get

T(u,v)Φ−1(ad∗(x,y)(u,v)) =
d

dε

∣∣∣∣
ε=0

Φ−1(e−εx̂u + ε(v × y), eεx̂v)

=
d

dε

∣∣∣∣
ε=0

(
e−εx̂u + ε(v× y) +

e · f
‖f‖2 e

−εx̂v, e−εx̂v
)

=
(

u× x + v× y +
e · f
‖f‖2 (v× x),v × x

)
= (u× x + v× y,v × x)
= ad∗(x,y)(u,v).

Therefore, the push-forward of the orbit symplectic form ω− to TS2
‖f‖ is

(Φ∗ω−)(u,v)(ad∗(x,y)(u,v), ad∗(x′,y′)(u,v))

= ω−(u,v)(T(u,v)Φ−1(ad∗(x,y)(u,v)), T(u,v)Φ−1(ad∗(x′,y′)(u,v))

= ω−(u,v)(ad∗(x,y)(u,v), ad∗(x′,y′)(u,v))

= −u · (x× x′)− v · (x× y′ − x′ × y)

= −u · (x× x′)− v · (x× y′ − x′ × y)− e · f
‖f‖2 v · (x× x′).

(14.7.28)

The first two terms represent the canonical symplectic structure on TS2
‖f‖

(identified via the Euclidean metric with T ∗S2
‖f‖), as we have seen in the

analysis of type II orbits. The third term is the following two-form on TS2
‖f‖

β(u,v)
(

ad∗(x,y)(u,v), ad∗(x′,y′)(u,v)
)

= − e · f
‖f‖2 v · (x× x′). (14.7.29)
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As in the case of θ for type II orbits, it is easily seen that (14.7.28) correctly
defines a two-form on TS2

‖f‖. It is necessarily closed since it is the difference
between Φ∗ω− and the canonical two-form on TS2

‖f‖. The two-form β is a
magnetic term in the sense of §6.6.

We remark that the semidirect product theory of Marsden, Ratiu, and
Weinstein [1984a,b], combined with cotangent bundle reduction theory,
(see, for example, Marsden [1992]) can be used to give an alternative ap-
proach to the computation of the orbit symplectic forms.

Exercises

� Exercise 14.7-1. Let K be a quadratic form on R3 and let K be the
associated symmetric (3 × 3)-matrix. Let

{F,L}K = −∇K · (∇F ×∇L).

Show that this is the Lie–Poisson bracket for the Lie algebra structure

[u,v]K = K(u× v).

What is the underlying Lie group?

� Exercise 14.7-2. Determine the coadjoint orbits for the Lie algebra in
the preceding exercise and calculate the orbit symplectic structure. Spe-
cialize to the case SO(2, 1).

� Exercise 14.7-3. Classify the coadjoint orbits of SU(1, 1), namely, the
group of complex (2× 2) matrices of determinant one, of the form

g =
(
a b
a b

)
.

where |a|2 − |b|2 = 1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 April 1998—14h10 . . . . . . . . . . . . . . . . . . . . . . . . . . .


