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13
Euler–Poincaré and Lie–Poisson
Reduction

Besides the Poisson structure on a symplectic manifold, the Lie–Poisson
bracket on g∗, the dual of a Lie algebra, is perhaps the most fundamental
example of a Poisson structure. We shall obtain it in the following man-
ner. Given two smooth functions F, H ∈ F(g∗), we extend them to func-
tions, FL, HL (respectively, FR, HR) on all T ∗G by left (respectively, right)
translations. The bracket {FL, HL} (respectively, {FR, HR}) is taken in the
canonical symplectic structure Ω on T ∗G. The result is then restricted to
g∗ regarded as the cotangent space at the identity; this defines {F, H}. We
shall prove that one get the Lie–Poisson bracket this way. In §14.6 we show
that the symplectic leaves of this bracket are the coadjoint orbits in g∗.

There is another side to the story too, where the basic objects that are
reduced are not Poisson brackets, but rather are variational principles. This
aspect of the story, which takes place on g rather than on g∗, will be told
as well.

13.1 The Lie–Poisson Reduction Theorem

We begin by studying the way the canonical Poisson bracket on T ∗G is
related to the Lie–Poisson bracket on g∗.

Theorem 13.1.1 (The Lie–Poisson Reduction Theorem). Identify-
ing the set of functions on g∗ with the set of left (respectively, right) in-
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variant functions on T ∗G endows g∗ with Poisson structures given by

{F, H}±(µ) = ±
〈

µ,

[
δF

δµ
,
δH

δµ

]〉
. (13.1.1)

The space g∗ with this Poisson structure is denoted g∗− (respectively, g∗+).
In contexts where the choice of left or right is clear, we shall drop the “ −”
or “+” from {F, H}− and {F, H}+.

Following Marsden and Weinstein [1983], this bracket on g∗ is called
the Lie–Poisson bracket after Lie [1890], p. 204, where the bracket is
given explicitly. See Weinstein [1983a] and §13.8 below for more historical
information. In fact, there are already some hints of this structure in Jacobi
[1866], p. 7. It was rediscovered several times since Lie’s work. For example,
it appears explicitly in Berezin [1967]. It is closely related to results of
Arnold, Kirillov, Kostant, and Souriau in the 1960s.

Before proving the theorem, we explain the terminology used in its state-
ment. First, recall from Chapter 9 how the Lie algebra of a Lie group G
is constructed. We define g = TeG, the tangent space at the identity. For
ξ ∈ g, we define a left invariant vector field ξL = Xξ on G by setting

ξL(g) = TeLg · ξ (13.1.2)

where Lg : G → G denotes left translation by g ∈ G and is defined by
Lgh = gh. Given ξ, η ∈ g, define

[ξ, η] = [ξL, ηL](e), (13.1.3)

where the bracket on the right-hand side is the Jacobi–Lie bracket on vec-
tor fields. The bracket (13.1.3) makes g into a Lie algebra, that is, [ , ] is
bilinear, antisymmetric, and satisfies Jacobi’s identity. For example, if G is
a subgroup of GL(n), the group of invertible n × n matrices, we identify
g = TeG with a vector space of matrices and then, as we calculated in
Chapter 9,

[ξ, η] = ξη − ηξ (13.1.4)

is the usual commutator of matrices.
A function FL : T ∗G→ R is called left invariant if, for all g ∈ G,

FL ◦ T ∗Lg = FL, (13.1.5)

where T ∗Lg denotes the cotangent lift of Lg, so T ∗Lg is the pointwise
adjoint of TLg. Let FL(T ∗G) denote the space of all smooth left invariant
functions on T ∗G. One similarly defines right invariant functions on T ∗G
and the space FR(T ∗G). Given F : g∗ → R and αg ∈ T ∗G, set

FL(αg) = F (T ∗e Lg · αg) = (F ◦ JR)(αg), (13.1.6)
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where JR : T ∗G → g∗, JR(αg) = T ∗e Lg ◦ αg is the momentum map of
the lift of right translation on G (see (12.2.8). FL = F ◦ JR is called the this
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left invariant extension of F from g∗ to T ∗G. One similarly defines the
right invariant extension by

FR(αg) = F (T ∗e Rg · αg) = (F ◦ JL)(αg), (13.1.7)

where JL : T ∗G→ g∗, JL(αg) = T ∗e Rg is the momentum map of the lift of
left translation on G (see (12.2.7)).

Right composition with JR (respectively, JL) thus defines a ring isomor-
phism F(g∗)→ FL(T ∗G) ( respectively, F(g∗)→ FR(T ∗G)) whose inverse
is restriction to the fiber T ∗e G = g∗.

Since T ∗Lg and T ∗Rg are symplectic maps on T ∗G, it follows that
FL(T ∗G) and FR(T ∗G) are closed under the usual Poisson bracket on
T ∗G. Thus, one way of rephrasing the Lie–Poisson reduction theorem (we
will see another way, using quotients, in §13.5) is to say that the above ring
isomorphisms of F(g∗) with FL(T ∗G) and FR(T ∗G) respectively, are also
isomorphisms of Lie algebras, that is, the following pair fromulae are valid.

{F, H}− = {FL, HL} |g∗ (13.1.8)

and

{F, H}+ = {FR, HR} |g∗, (13.1.9)

where { , }± is the Lie–Poisson bracket on g∗ and { , } is the canonical
bracket on T ∗G.

Proof of the Theorem. JR : T ∗G → g∗− is a Poisson map by Theo-
rem 12.4.1. Therefore,

{F, H}− ◦ JR = {F ◦ JR, H ◦ JR} = {FL, HL}.
Restriction of this relation to g∗ gives (13.1.8) One similarly proves (13.1.9)
using the Poisson property of the map JL : T ∗G→ g∗+. ¥

The proof above was a posteriori , that is, one had to already know the
formula for the Lie–Poisson bracket. In §13.5 we will prove this theorem
again using momentum functions and quotienting by G (see §10.7). This
will represent an a priori proof, in the sense that the formula for the Lie–
Poisson bracket will be deduced as part of the proof. To gain further insight
into this, the next rhee sections will give constructive prrofs of this theorem
in three special cases; the abstract proof can be found in §13.5

13.2 Proof of the Lie–Poisson Reduction
Theorem for GL(n)

We now prove the Lie–Poisson reduction theorem for the special case of the
matrix group G = GL(n) of real invertible n×n matrices. Left translation
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by U ∈ G is given by matrix multiplication: LUA = UA. Identify the
tangent space to G at A with the vector space of all n× n matrices, so for
B ∈ TAG,

TALU ·B = UB

as well, since LUA is linear in A. The cotangent space is identified with
the tangent space via the pairing

〈π,B〉 = trace(πTB), (13.2.1)

where πT is the transpose of π. The cotangent lift of LU is thus given by

〈T ∗LUπ,B〉 = 〈π, TLU ·B〉 = trace(πTUB),

that is,

T ∗LUπ = UTπ. (13.2.2)

Given functions F, G : g∗ → R, let

FL(A, π) = F (ATπ) and GL(A, π) = G(ATπ) (13.2.3)

be their left invariant extensions. By the chain rule, letting µ = ATπ, we
get

DAFL(A, π) · δA = DF (ATπ) · (δA)Tπ

=
〈

δF

δµ
, (δA)Tπ

〉
= trace

(
πT δA

δF

δµ

)
. (13.2.4)

The canonical bracket is therefore

{FL, GL} =
〈

δFL
δA

,
δGL

δπ

〉
−
〈

δGL

δA
,
δFL
δπ

〉
= DAFL(A, π) · δGL

δπ
−DAGL(A, π) · δFL

δπ
. (13.2.5)

Since δFL/δπ = δF/δµ at the identity A = Id, where π = µ, using (13.2.4),
the Poisson bracket (13.2.5) becomes

{FL, GL} (µ) = trace
(

µT
δG

δµ

δF

δµ
− µT

δF

δµ

δG

δµ

)
= −

〈
µ,

δF

δµ

δG

δµ
− δG

δµ

δF

δµ

〉
= −

〈
µ,

[
δF

δµ
,
δG

δµ

]〉
, (13.2.6)

which is the (−)Lie–Poisson bracket. This derivation can be adapted for
other matrix groups, including the rotation group SO(3) as special cases.
However, in the latter case, one has to be extremely careful to treat the
orthogonality constraint properly.
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13.3 Proof of the Lie–Poisson Reduction
Theorem for Diffvol(M)

Another special case is G = Diffvol(Ω), the subgroup of the group of diffeo-
morphisms Diff(Ω) of a region Ω ⊂ R3, consisting of the volume-preserving
diffeomorphisms. We shall treat Diff(Ω) and Diffvol(Ω) formally, although
it is known how to handle the functional analysis issues involved (see Ebin
and Marsden [1970] and Adams, Ratiu, and Schmid [1986a,b] and refer-
ences therein). We shall prove (13.1.9) for this case.

For η ∈ Diff(Ω), the tangent space at η is given by the set of maps
V : Ω → TΩ satisfying V (X) ∈ Tη(X)Ω, that is, vector fields over η.
We think of V as a material velocity field. Thus, the tangent space at
the identity is the space of vector fields on Ω (tangent to ∂Ω). Given two
such vector fields, their left Lie algebra bracket is related to the Jacobi–Lie
bracket by (see Chapter 9):

[V, W ]LA = − [V, W ]JL ,

that is,

[V, W ]LA = (W · ∇)V − (V · ∇)W, (13.3.1)

as one finds using the definitions. Let us compute the right Lie–Poisson
bracket on g∗. Right translation by ϕ on G is given by

Rϕη = η ◦ ϕ. (13.3.2)

Differentiating (13.3.2) with respect to η gives

TRϕ · V = V ◦ ϕ. (13.3.3)

Identify TηG with those V ’s such that the vector field on R3 given by
v = V ◦ η−1, is divergence-free and identify T ∗ηG with TηG via the pairing

〈π, V 〉 =
∫

Ω

π · V dx dy dz, (13.3.4)

where π · V is the dot product on R3. By the change of variables formula,
and the fact that ϕ ∈ G has unit Jacobian,

〈T ∗Rϕ · π, V 〉 = 〈π, TRϕ · V 〉

=
∫

Ω

π · (V ◦ ϕ) dx dy dz =
∫

Ω

(π ◦ ϕ−1) · V dx dy dz,

so

T ∗Rϕ · π = π ◦ ϕ−1. (13.3.5)
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If F : g∗ → R is given, its right invariant extension is

FR(η, π) = F (π ◦ η−1). (13.3.6)

Let us denote elements of g∗ by M, so we are investigating the relation
between the canonical bracket of FR and HR and the Lie–Poisson bracket
of F and H via the relation

M ◦ η = π.

From (13.3.6) and the chain rule, we get

DηFR(Id, π) · v = −DMF (M) ·Dηπ(Id) · v

= −
∫

Ω

((v · ∇)M) · δF

δM
dx dy dz, (13.3.7)

where δF/δM is a divergence-free vector field parallel to the boundary.
Since T ∗G is not given as a product space, one has to worry about what it
means to hold π constant in (13.3.7). We leave it to the ambitious reader to
justify this formal calculation. Thus, the canonical bracket at the identity
becomes

{FR, HR} (Id, π) =
∫

Ω

(
δFR
δη

δHR

δπ
− δHR

δη

δFR
δπ

)
dx dy dz

= DηFR(Id, π) · δHR

δπ

−DηHR(Id, π) · δFR
δπ

. (13.3.8)

At the identity, π = M and δFR/δπ = δF/δM, so substituting this and
(13.3.7) into (13.3.8), we get

{FR, HR}(Id,M)

= −
∫

Ω

[(
δH

δM
· ∇
)

M · δF

δM
−
(

δF

δM
· ∇
)

M · δH

δM

]
dx dy dz. (13.3.9)

Equation (13.3.9) may be integrated by parts to give

{FR, HR} (Id,M)

=
∫

M ·
[(

δH

δM
· ∇
)

δF

δM
−
(

δF

δM
· ∇
)

δH

δM

]
dx dy dz

=
∫

M ·
[

δF

δM
,
δH

δM

]
LA

dx dy dz (13.3.10)

which is the “+” Lie–Poisson bracket. In doing this step note div(δH/δM) =
0 and since δH/δM and δF/δM are parallel to the boundary, no boundary
term appears. When doing free boundary problems, these boundary terms
are essential to retain (see Lewis, Marsden, Montgomery, and Ratiu [1986]).

For other diffeormorphism groups, it may be convenient to treat M as a
one-form density rather than a vector field.
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13.4 The Lie–Poisson Reduction Theorem
using Momentum Functions

Now we turn to a constructive proof of the Lie–Poisson reduction theorem.
We begin by observing that T ∗G/G is diffeomorphic to g∗. To see this, note
that the trivialization of T ∗G by left translations given by

λ : αg ∈ T ∗gG 7→ (g, T ∗e Lg(αg)) = (g,JR(αg)) ∈ G× g∗

transofrms the usual cotangent lift of left translation on G into the G-action
on G× g∗ given by

g · (h, µ) = (gh, u), (13.4.1)

for g, h ∈ Gand µ ∈ g∗. Therefore, T ∗G/G is diffeomorphic to (G× g∗)/G
which in turn equals g∗, since G does not act on g (see (13.4.1)). Thus, we
can regard TR : T ∗G→ g∗ as the canonical projection T ∗G→ T ∗G/G and,
as a consequence of Theorem ??, g∗ inherits a Poisson bracket, which we
will call { , }—for the time being, uniquely characterized by the relation:

{F, H}− ◦ JR = {F ◦ JR, H ◦ JR} (13.4.2)

for any functions F, H ∈ F(g∗). The goal of this section is to explicitly
compute this bracket {, }− and to discover at the end that it equals the
(−) Lie–Poisson bracket.

using properties of momentum functions. It will be useful to recall that
the Poisson bracket {F, H} depends only on the linearization of F and H
at each point, so in determining the canonical bracket on T ∗G, we can
assume the functions in question are linear on fibers.

overflow---needs
to be
reworded

Proof of the Lie–Poisson Reduction Theorem. Recall that the space
FL(T ∗G) of left invariant functions on T ∗G is isomorphic (as a vector
space) to F(g∗), the space of all functions on the dual g∗ of the Lie algebra
g of G. This isomorphism is given by F ∈ F(g∗)↔ FL ∈ FL(T ∗G), where

FL(αg) = F (T ∗Lg · αg). (13.4.3)

Since FL(T ∗G) is closed under bracketing (T ∗Lg is a symplectic map),
F(g∗) gets endowed with a unique Poisson structure. As we remarked be-
fore, it is enough to consider the case in which F is replaced by its lin-
earization at a particular point. This means it is enough to prove the Lie–
Poisson reduction theorem for linear functions on g∗. If F is linear, we can
write F (µ) = 〈µ, δF/δµ〉, where δF/δµ is a constant on g, so that letting
µ = T ∗Lg · αg, we get

FL(αg) = F (T ∗Lg · αg) =
〈

T ∗Lg · αg,
δF

δµ

〉
=
〈

αg, TLg ·
δF

δµ

〉
= P

((
δF

δµ

)
L

)
(αg), (13.4.4)
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where ξL(g) = TeLg(ξ) is the left invariant vector field on G whose value at
e is ξ ∈ g. Thus, by (12.1.2), (13.4.4), and the definition of the Lie algebra
bracket, we have

{FL, HL} (µ) =
{
P
((

δF

δµ

)
L

)
,P
((

δH

δµ

)
L

)}
(µ)

= −P
([(

δF

δµ

)
L

,

(
δH

δµ

)
L

])
(µ)

= −P
([

δF

δµ
,
δH

δµ

]
L

)
(µ)

= −
〈

µ,

[
δF

δµ
,
δH

δµ

]〉
(13.4.5)

as required.
The formula with “+” follows by using right invariant extensions of linear

functions since the Lie bracket of two right invariant vector fields equals
minus the Lie algebra bracket of their generators.

Finally, we observe that since T ∗G is a Poisson manifold, formulae (13.1.8)
and (13.1.9) show that g∗− and g∗+ inherit the same properties, so they are
Poisson as well. ¥

13.5 Reduction and Reconstruction of
Dynamics

In the examples in subsequent sections, we will use the Lie–Poisson reduc-
tion theorem in the following way:

Theorem 13.5.1 (Lie–Poisson Reduction of Dynamics). Let G be
a Lie group and H : T ∗G → R. Assume H is left (respectively, right)
invariant. Then the function H− := H|g∗ (respectively, H+ := H|g∗) on
g∗ satisfies

H(αg) = H−(πL(αg)) for all αg ∈ T ∗gG (13.5.1)

where πL : T ∗G→ g∗− is given by πL(αg) = T ∗Lg · αg (respectively,

H(αg) = H+(πR(αg)) for all αg ∈ T ∗gG, (13.5.2)

where πR : T ∗G→ g∗+ is given by πR(αg) = T ∗Rg · αg).
The flow Ft of H on T ∗G and the flow F−t (respectively, F+

t ) of H−

(respectively, H+) on g∗− (respectively, g∗+) are related by

πL(Ft(αg)) = F−t (πL(αg)), (13.5.3)

πR(Ft(αg)) = F+
t (πR(αg)). (13.5.4)
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13.5 Reduction and Reconstruction of Dynamics 409

In other words, a left invariant Hamiltonian on T ∗G induces Lie–Poisson
dynamics on g∗−, while a right invariant one induces Lie–Poisson dynamics
on g∗+. The result is a direct consequence of the Lie–Poisson reduction
theorem and the fact that a Poisson map relates Hamiltonian systems and
their integral curves to Hamiltonian systems. As we shall see in Volume II,
this is a special case of the reduction procedure.

As we have remarked, the maps λ and ρ induce Poisson isomorphisms
between (T ∗G)/G and g∗ (with the − and + brackets, respectively) and
this is a special instance of Poisson reduction. The following result is one
useful way of formulating the general relation between T ∗G and g∗. We
treat the left invariant case for simplicity.

Theorem 13.5.2. Let G be a Lie group and let H : T ∗G → R be a left
invariant Hamiltonian. Let h : g∗ → R be the restriction of H to T ∗e G. For
a curve p(t) ∈ T ∗g(t)G, let µ(t) = (T ∗g(t)L) · p(t) = λ(p(t)) be the induced
curve in g∗. Assuming that g(t) satisfies the differential equation

ġ = TeLg
δh

δµ
,

where µ = p(0), the following are equivalent:

(i) p(t) is an integral curve of XH ; that is, Hamilton’s equations on T ∗G
hold;

(ii) for any F ∈ F(T ∗G), Ḟ = {F, H}, where { , } is the canonical bracket
on T ∗G;

(iii) µ(t) satisfies the Lie–Poisson equations

dµ

dt
= ad∗δh/δµµ, (13.5.5)

where adξ : g→ g is defined by adξ η = [ξ, η] and ad∗ξ is its dual, that
is,

µ̇a = Cd
ba

δh

δµb
µd; (13.5.6)

(iv) for any f ∈ F(g∗), we have

ḟ = {f, h}−, (13.5.7)

where { , }− is the minus Lie–Poisson bracket.

Proof. First of all, the equivalence of (i) and (ii) is general for any cotan-
gent bundle, as we know. The equivalence of (ii) and (iv) follows from the
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410 13.5 Reduction and Reconstruction of Dynamics

fact that λ is a Poisson map and H = h ◦ λ. Finally, we establish the
equivalence of (iii) and (iv). Indeed, ḟ = {f, h}− means〈

µ̇,
δf

δµ

〉
= −

〈
µ,

[
δf

δµ
,
δh

δµ

]〉
=
〈

µ, adδh/δµ
δf

δµ

〉
=
〈

ad∗δh/δµ µ,
δf

δµ

〉
.

Since f is arbitrary, this is equivalent to (iii). ¥

It is useful to keep in mind that the Hamiltonian H on T ∗G generally
arises from a Lagrangian L : TG → R via a Legendre transform FL. In
fact, many of the constructions and verifications are simpler using the La-
grangian. Assume that L is left invariant (respectively, right invariant);
that is,

L(TLg · v) = L(v), (13.5.8)

respectively,

L(TRg · v) = L(v) (13.5.9)

for all g ∈ G and v ∈ ThG. Differentiating (13.5.8) and (13.5.9), we find

FL(TLg · v) · (TLg · w) = FL(v) · w, (13.5.10)

respectively,

FL(TRg · v) · (TRg · w) = FL(v) · w (13.5.11)

for all v, w ∈ ThG and g ∈ G. In other words,

T ∗Lg ◦ FL ◦ TLg = FL, (13.5.12)

respectively,

T ∗Rg ◦ FL ◦ TRg = FL. (13.5.13)

Note that the action of L is left (respectively, right) invariant

A(TLg · v) = A(v), (13.5.14)

respectively,

A(TRg · v) = A(v) (13.5.15)
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13.5 Reduction and Reconstruction of Dynamics 411

since A(TLg · v) = FL(TLg · v) · (TLg · v) = FL(v) · v = A(v) by (13.5.10).
Thus, the energy E = A − L is left (respectively, right) invariant on TG.
If L is hyperregular, so FL : TG → T ∗G is a diffeomorphism, then H =
E ◦ (FL)−1 is left (respectively, right) invariant on T ∗G.

The Lagrangian formalism is also useful for the reconstruction process
in which we reconstruct the dynamics on T ∗G or TG from that on g∗:

T ∗G g∗
Lie–Poisson reduction

reconstruction

-�

Theorem 13.5.3 (Lie–Poisson Reconstruction Theorem). Let L :
TG → R be a hyperregular Lagrangian which is left (respectively, right)
invariant on TG. Let H : T ∗G → R be the associated Hamiltonian and
H− : g∗− → R (respectively, H+ : g∗+ → R) be the induced Hamiltonian
on g∗. Let µ(t) ∈ g∗ be an integral curve for H− (respectively, H+) with
initial condition µ(0) = T ∗e Lg0 · αg0 (respectively, µ(0) = T ∗e Rg0 · αg0) and
let ξ(t) = FL−1µ(t) ∈ g. Let

v0 = TLg0 · ξ(0) ∈ Tg0G.

Then the integral curve for the Langangian L with initial condition (g0, v0)
is given by

VL(t) = TLg(t) · ξ(t), (13.5.16)

respectively,

VR(t) = TRg(t) · ξ(t), (13.5.17)

where g(t) solves the equation

dg

dt
= TLg(t) · ξ(t), (13.5.18)

respectively,

dg

dt
= TRg(t) · ξ(t). (13.5.19)

The corresponding integral curve of XH on T ∗G with initial condition
αg0 and covering µ(t) is

α(t) = FL(VL(t)) = T ∗L(g0g(t))−1µ(t), (13.5.20)

respectively,

α(t) = FL(VR(t)) = T ∗R(g0(g(t))−1µ(t). (13.5.21)
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Proof. According to Lie–Poisson reduction of dynamics, the integral
curve of XH− on g∗− associated to an integral curve α(t) ∈ T ∗g(t)G of XH is

µ(t) = T ∗Lg(t) · α(t). (13.5.22)

Applying FL−1 to (13.5.22) gives

ξ(t) = TLg(t)−1 · V (t) (13.5.23)

for the corresponding integral curve of the Lagrangian, that is, V (t) =
TLg(t) · ξ(t). Since XE is a second-order equation, dg/dt = V , so we get
the result. ¥

Thus, given ξ(t), one solves (13.5.18) for g(t) and then constructs V (t)
or α(t) from (13.5.16) and (13.5.20). As we shall see in the examples, this
procedure has a natural physical interpretation. The previous theorem gen-
eralizes to general Lagrangian systems in the following way. In fact, Theo-
rem 13.6.3 is a corollary of the next theorem.

Theorem 13.5.4 (Lagrangian Lie–Poisson Reconstruction). Let L :
TG → R be a left invariant Lagrangian such that its Lagrangian vec-
tor field Z ∈ X(TG) is a second-order equation and is left invariant.
Let ZG ∈ X(g) be the induced vector field on (TG)/G ≈ g and let ξ(t)
be an integral curve of ZG. If g(t) ∈ G is the solution of the nonau-
tonomous ordinary differential equation ġ(t) = TeLg(t)ξ(t), g(0) = e,
and g ∈ G, then V (t) = TeLgg(t)ξ(t) is the integral curve of Z satisfying
V (0) = TeLgξ(0) and V (t) projects to ξ(t), that is, TLτ(V (t))−1V (t) = ξ(t),
where τ : TG→ G is the tangent bundle projection.

Proof. Let V (t) be the integral curve of Z satisfying V (0) = TeLgξ(0) for
a given element ξ(0) ∈ g. Since ξ(t) is the integral curve of ZG whose flow is
conjugated to the flow of Z by left translation, we have TLτ(V (t))−1V (t) =
ξ(t). If h(t) = τ(V (t)), since Z is a second-order equation, we have

V (t) = ḣ(t) = TeLh(t)ξ(t), h(0) = τ(V (0)) = g,

so that letting g(t) = g−1h(t) we get g(0) = e and

ġ(t) = TLg−1 ḣ(t) = TLg−1TLh(t)ξ(t) = TLg(t)ξ(t).

This determines g(t) uniquely from ξ(t) and so

V (t) = TeLh(t)ξ(t) = TeLgg(t)ξ(t). ¥

These calculations suggest rather strongly that one should examine the
Lagrangian (rather than the Hamiltonian) side of the story on an indepen-
dent footing. We will do exactly that shortly.
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13.6 The Linearized Lie–Poisson Bracket 413

Since Poisson brackets and Hamilton’s equations naturally drop from
T ∗G to g∗, it is natural to ask if other structures do too, such as Hamilton–
Jacobi theory. We investigate this question now. We shall just state the
results of Ge and Marsden [1988], omitting the proofs.

Let H be a G invariant function on T ∗G and let HL be the corresponding
left reduced Hamiltonian on g∗. (To be specific, we deal with left actions; of
course, there are similar statements for right reduced Hamiltonians). If S
is invariant, there is a unique function SL such that S(g, g0) = SL(g−1g0).
(One gets a slightly different representation for S by writing g−1

0 g in place
of g−1g0.)

Proposition 13.5.5. The left reduced Hamilton–Jacobi equation is the
following equation for a function SL : G→ R:

∂SL
∂t

+ HL(−TR∗g · dSL(g)) = 0, (13.5.24)

which we call the Lie–Poisson Hamilton–Jacobi equation. The Lie–
Poisson flow of the Hamiltonian HL is generated by the solution SL of
(13.5.24) in the sense that the flow is given by the Poisson transformation
of g∗ : Π0 7→ Π defined as follows. Define g ∈ G by solving the equation

Π0 = −TL∗g · dgSL (13.5.25)

for g ∈ G and then set

Π = Ad∗g−1 Π0. (13.5.26)

Here Ad denotes the adjoint action and so the action in (13.5.26) is the
coadjoint action. Note that (13.5.26) and (13.5.25) give Π = −TR∗g ·dSL(g).

13.6 The Linearized Lie–Poisson Bracket

Here we show that the equations linearized about an equilibrium solution
of a Lie–Poisson system (such as the ideal fluid equations) are Hamiltonian
with respect to a “constant coefficient” Lie–Poisson bracket. The Hamil-
tonian for these linearized equations is 1

2δ2 (H + C)|e, the quadratic func-
tional obtained by taking one-half of the second variation of the Hamilto-
nian plus conserved quantities and evaluating it at the equilibrium solution
where the conserved quantity C (often a Casimir) is chosen so that the first
variation δ(H + C) vanishes at the equilibrium. A consequence is that the
linearized dynamics preserves 1

2δ2 (H + C)|e. This is useful for studying
stability of the linearized equations.

For a Lie algebra g, the Lie–Poisson bracket is defined on g∗, the dual of
g with respect to a weakly nondegenerate pairing 〈 , 〉 between g∗ and g by
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414 13.6 The Linearized Lie–Poisson Bracket

the usual formula

{F, G} (µ) =
〈

µ,

[
δF

δµ
,
δG

δµ

]〉
, (13.6.1)

where δF/δµ ∈ g is determined by

DF (µ) · δµ =
〈

δµ,
δF

δµ

〉
(13.6.2)

when such an element δF/δµ exists, for any µ, δµ ∈ g∗. The equations of
motion are

dµ

dt
= − ad

(
δH

δµ

)∗
µ, (13.6.3)

where H : g∗ → R is the Hamiltonian, ad(ξ) : g → g is the adjoint action,
ad(ξ) ·η = [ξ, η] for ξ, η ∈ g, and ad(ξ)∗ : g∗ → g∗ is its dual. Let µe ∈ g∗ be
an equilibrium solution of (13.6.3). The linearized equations of (13.6.3) at
µe are obtained by expanding in a Taylor expansion with small parameter
ε using µ = µe + εδµ, and taking (d/dε)|ε=0 of the resulting equations.
This gives

δH

δµ
=

δH

δµe
+ εD

(
δH

δµ

)
(µe) · δµ + O(ε2), (13.6.4)

where 〈δH/δµe, δµ〉 := DH(µe) · δµ, and the derivative D(δH/δµ)(µe) · δµ
is the linear functional

ν ∈ g∗ 7→ D2H(µe) · (δµ, ν) ∈ R (13.6.5)

by using the definition (13.6.2). Since δ2H := D2H(µe) · (δµ, δµ), it follows
that the functional (13.6.5) equals 1

2δ(δ2H)/δ(δµ). Consequently, (13.6.4)
becomes

δH

δµ
=

δH

δµe
+

1
2
ε
δ(δ2H)
δ(δµ)

+ O(ε2) (13.6.6)

and the Lie–Poisson equations (13.6.3) yield

dµe
dt

+ ε
d(δµ)

dt
= − ad

(
δH

δµe

)∗
µe

− 1
2
ε

[
ad
(

δ(δ2H)
δ(δµ)

)∗
µe − ad

(
δH

δµe

)∗
δµ

]
+ O(ε2).

Thus, the linearized equations are

d(δµ)
dt

= −1
2

ad
(

δ(δ2H)
δ(δµ)

)∗
µe − ad

(
δH

δµe

)∗
δµ. (13.6.7)
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13.6 The Linearized Lie–Poisson Bracket 415

If H is replaced by HC := H + C, with the function C chosen to satisfy
δHC/δµe = 0, we get ad(δHC/δµe)∗δµ = 0, and so

d(δµ)
dt

= −1
2

ad
(

δ(δ2HC)
δ(δµ)

)∗
µe. (13.6.8)

Equation (13.6.8) is Hamiltonian with respect to the linearized Poisson
bracket (see Example (f) of §10.2):

{F, G} (µ) =
〈

µe,

[
δF

δµ
,
δG

δµ

]〉
. (13.6.9)

Ratiu [1982] interprets this bracket in terms of a Lie–Poisson structure of
a loop extension of g. The Poisson bracket (13.6.9) differs from the Lie–
Poisson bracket (13.6.1) in that it is constant in µ. With respect to the
Poisson bracket (13.6.9), Hamilton’s equations given by δ2HC are (13.6.8),
as an easy verification shows. Note that the critical points of δ2HC are
stationary solutions of the linearized equation (13.6.8), that is, they are
neutral modes for (13.6.8).

If δ2HC is definite, then either δ2HC or −δ2HC is positive-definite and
hence defines a norm on the space of perturbations δµ (which is g∗). Being
twice the Hamiltonian function for (13.6.8), δ2HC is conserved. So, any
solution of (13.6.8) starting on an energy surface of δ2HC (that is, on a
sphere in this norm) stays on it and hence the zero solution of (13.6.8) is
(Liapunov) stable. Thus, formal stability, (that is, δ2HC definite) implies
linearized stability. It should be noted, however, that the conditions for
definiteness of δ2HC are entirely different from the conditions for “normal
mode stability,” that is, that the operator acting on δµ given by (13.6.8)
have a purely imaginary spectrum. In particular, having a purely imaginary
spectrum for the linearized equation does not produce Liapunov stability
of the linearized equations. The difference between δ2HC and the operator
in (13.6.8) can be made explicit, as follows. Assume that the pairing 〈 , 〉
identifies the dual g∗ with g itself, that is, there is a weak Ad-invariant
metric 〈〈 , 〉〉 on g and a linear operator L : g→ g such that

δ2HC = 〈〈δµ, Lδµ〉〉 ; (13.6.10)

L is symmetric with respect to the metric 〈〈 , 〉〉, that is, 〈〈ξ, Lη〉〉 = 〈〈Lξ, η〉〉
for all ξ, η ∈ g. Then the linear operator in (13.6.8) becomes

δµ 7→ [Lδµ, µe] (13.6.11)

which, of course, differs from L, in general. However, note that the kernel
of L is included in the kernel of the linear operator (13.6.11), that is, the
zero eigenvalues of L give rise to “neutral modes” in the spectral analy-
sis of (13.6.11). There is a remarkable coincidence of the zero-eigenvalue
equations for these operators in fluid mechanics: for the Rayleigh equation
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416 13.6 The Linearized Lie–Poisson Bracket

describing plane-parallel shear flow in an inviscid homogeneous fluid, tak-
ing normal modes makes the zero-eigenvalue equations corresponding to
L and to (13.6.11) coincide (see Abarbanel, Holm, Marsden, And Ratiu
[1986]).

For additional applications of the stability method, see the Introduction
and Holm, Marsden, Ratiu, and Weinstein [1985], Abarbanel and Holm
[1987], Simo, Posbergh, and Marsden [1990, 1991], and Simo, Lewis, and
Marsden [1991]. For a more general treatment of the linearization process,
see Marsden, Ratiu, and Raugel [1991].

Some History of Lie–Poisson and Euler–Poincaré Equations. We
continue with some comments on the history of Poisson structures that we
began in §10.3. Recall that we pointed out how Lie, in his work up to
1890 on function groups, had many of the essential ideas of general Poisson
manifolds and, in particular, had explicitly studied the Lie–Poisson bracket
on duals of Lie algebras.

The theory developed so far in this chapter describes the adaptation
of the concepts of Hamiltonian mechanics to the context of the duals of
Lie algebras. This theory could easily have been given shortly after Lie’s
work, but evidently it was not observed for the rigid body or ideal fluids
until the work of Pauli [1953], Martin [1959], Arnold [1966a], Ebin and
Marsden [1970], Nambu [1973], and Sudarshan and Mukunda [1974], all of
whom were apparently unaware of Lie’s work on the Lie–Poisson bracket. It
seems that even Elie Cartan was unaware of this aspect of Lie’s work, which
does seem surprising. Perhaps it is less surprising when one thinks for a
moment about how many other things Cartan was involved in at the time.
Nevertheless, one is struck by the amount of rediscovery and confusion in
this subject. Evidently, this situation is not unique to mechanics.

Meanwhile, as Arnold [1988] and Chetaev [1989] pointed out, one can
also write the equations directly on the Lie algebra, bypassing the Lie–
Poisson equations on the dual. The resulting equations were first written
down on a general Lie algebra by Poincaré [1901b]; we refer to these as the
Euler–Poincaré equations. We shall develop them from a modern point of
view in the next section. Poincaré [1910] goes on to study the effects of
the deformation of the earth on its precession—he apparently recognizes
the equations as Euler equations on a semidirect product Lie algebra. In
general, the command that Poincaré had of the subject is most impressive,
and is hard to match in his near contemporaries, except perhaps Riemann
[1860, 1861] and Routh [1877, 1884]. It is noteworthy that Poincaré [1901b]
has no references, so it is rather hard to trace his train of thought or
his sources; compare this style with that of Hamel [1904]! In particular,
he gives no hint that he understood the work of Lie on the Lie–Poisson
structure, but, of course, Poincaré understood the Lie group and the Lie
algebra machine very well indeed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 April 1998—17h20 . . . . . . . . . . . . . . . . . . . . . . . . . . .



13.6 The Linearized Lie–Poisson Bracket 417

Our derivation of the Euler–Poincaré equations in the next section is
based on a reduction of variational principles, not on a reduction of the
symplectic or Poisson structure, which is natural for the dual. We also show
that the Lie–Poisson equations are related to the Euler–Poincaré equations
by the “fiber derivative,” in the same way as one gets from the ordinary
Euler–Lagrange equations to the Hamilton equations. Even though this is
relatively trivial, it does not appear to have been written down before. In
the dynamics of ideal fluids, the resulting variational principle is related
to what has been known as “Lin constraints” (see also Newcomb [1962]
and Bretherton [1970].) This itself has an interesting history, going back to
Ehrenfest, Boltzman, and Clebsch, but again, there was little if any contact
with the heritage of Lie and Poincaré on the subject. One person who was
well aware of the work of both Lie and Poincaré was Hamel.

How does Lagrange fit into this story? In Mecanique Analytique, Vol-
ume 2, equations A on page 212 are the Euler–Poincaré equations for the
rotation group written out explicitly for a reasonably general Lagrangian.
He eventually specializes them to the rigid body equations of course. We
should remember that Lagrange also developed the key concept of the La-
grangian representation of fluid motion, but it is not clear that he un-
derstood that both systems are special instances of one theory. Lagrange
spends a large number of pages on his derivation of the Euler–Poincaré
equations for SO(3), in fact, a good chunk of Volume 2. His derivation is
not as clean as we would give today, but it seems to have the right spirit
of a reduction method. That is, he tries to get the equations from the
Euler–Lagrange equations on T SO(3) by passing to the Lie algebra.

In view of the historical situation described above, one might argue that
the term “Euler–Lagrange-Poincaré” equations is right for these equations.
Since Poincaré noted the generalization to arbitrary Lie algebras, and ap-
plied it to interesting fluid problems, it is clear that his name belongs, but
in light of other uses of the term “Euler–Lagrange,” it seems that “Euler–
Poincaré” is a reasonable choice.

Marsden and Scheurle [1993a,b] and Weinstein [1994] have studied a
more general version of Lagrangian reduction whereby one drops the Euler–
Lagrange equations from TQ to TQ/G. This is a nonabelian generalization
of the classical Routh method, and leads to a very interesting coupling
of the Euler–Lagrange and Euler–Poincaré equations that we shall briefly
sketch in the next section. This problem was also studied by Hamel [1904] in
connection with his work on nonholonomic systems (see Koiller [1992] and
Bloch, Krishnaprasad, Marsden, and Murray [1994] for more information).

The current vitality of mechanics, including the investigation of funda-
mental questions, is quite remarkable, given its long history and develop-
ment. This vitality comes about through rich interactions with both pure
mathematics (from topology and geometry to group representation theory),
and through new and exciting applications to areas like control theory. It is
perhaps even more remarkable that absolutely fundamental points, such as
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418 13.7 The Euler–Poincaré Equations

a clear and unambiguous linking of Lie’s work on the Lie–Poisson bracket
on the dual of a Lie algebra and Poincaré’s work on the Euler–Poincaré
equations on the Lie algebra itself, with the most basic of examples in me-
chanics, such as the rigid body and the motion of ideal fluids, took nearly
a century to complete. The attendant lessons to be learned about commu-
nication between pure mathematics and the other mathematical sciences
are, hopefully, obvious.

Exercises

¦ Exercise 13.6-1. Write out the linearized rigid body equations about an
equilibrium explicitly.

¦ Exercise 13.6-2. Let g be finite dimensional. Let e1, . . . , en be a ba-
sis for g and e1, . . . , en a dual basis for g∗. Let µ = µae

a ∈ g∗ and
H(µ) = H(µ1, . . . , µn) : g∗ → R. Let [µa, µb] = Cd

abµd. Derive a co-ordinate
expression for the linearized equations (13.6.7):

d(δµ)
dt

= −1
2

ad
(

δ(δ2H)
δµ

)∗
µe − ad

(
δH

δµe

)∗
δµ.

13.7 The Euler–Poincaré Equations

To understand this section, it will be helpful to develop some more of the
basics about rigid body dynamics from the Introduction (further details
are given in Chaper 15). We regard an element R ∈ SO(3) giving the
configuration of the body as a map of a reference configuration B ⊂ R3 to
the current configuration R(B); the map R takes a reference or label point
X ∈ B to a current point x = R(X) ∈ R(B). When the rigid body is in
motion, the matrix R is time-dependent and the velocity of a point of the
body is ẋ = ṘX = ṘR−1x. Since R is an orthogonal matrix, R−1Ṙ and
ṘR−1 are skew matrices, and so we can write

ẋ = ṘR−1x = ω × x, (13.7.1)

which defines the spatial angular velocity vector ω. Thus, ω is essen-
tially given by right translation of Ṙ to the identity.

The corresponding body angular velocity is defined by

Ω = R−1ω, (13.7.2)

so that Ω is the angular velocity relative to a body fixed frame. Notice that

R−1ṘX = R−1ṘR−1x = R−1(ω × x)

= R−1ω ×R−1x = Ω×X (13.7.3)
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13.7 The Euler–Poincaré Equations 419

so that Ω is given by left translations of Ṙ to the identity. The kinetic
energy is obtained by summing up m‖ẋ‖2/2 over the body:

K =
1
2

∫
B

ρ(X)‖ṘX‖2 d3X, (13.7.4)

where ρ is a given mass density in the reference configuration. Since

‖ṘX‖ = ‖ω × x‖ = ‖R−1(ω × x)‖ = ‖Ω×X‖,

K is a quadratic function of Ω. Writing

K =
1
2
ΩT IΩ (13.7.5)

defines the moment of inertia tensor I, which, if the body does not de-
generate to a line, is a positive-definite (3×3)-matrix, or better, a quadratic
form. This quadratic form can be diagonalized, and this defines the princi-
pal axes and moments of inertia. In this basis, we write I = diag(I1, I2, I3).
The function K is taken to be the Lagrangian of the system on T SO(3)
(and by means of the Legendre transformation we get the corresponding
Hamiltonian description on T ∗ SO(3)). Notice directly from (13.7.4) that
K is left (not right) invariant on T SO(3). It follows that the corresponding
Hamiltonian is also left invariant.

From the Lagrangian point of view, the relation between the motion in
R space and that in body angular velocity (or Ω) space is as follows:

Theorem 13.7.1. The curve R(t) ∈ SO(3) satisfies the Euler–Lagrange
equations for

L(R, Ṙ) =
1
2

∫
B

ρ(X)‖ṘX‖2 d3X, (13.7.6)

if and only if Ω(t) defined by R−1Ṙv = Ω×v for all v ∈ R3 satisfies Euler’s
equations

IΩ̇ = IΩ× Ω. (13.7.7)

One instructive way to prove this indirectly is to pass to the Hamiltonian
formulation and use Lie–Poisson reduction, as outlined above. One way to
do it directly is to use variational principles. By Hamilton’s principle, R(t)
satisfies the Euler–Lagrange equations if and only if

δ

∫
L dt = 0.

Let l(Ω) = 1
2 (IΩ)·Ω, so that l(Ω) = L(R, Ṙ) if R and Ω are related as above.

To see how we should transform Hamilton’s principle, we differentiate the
relation R−1Ṙ = Ω̂ with respect to R to get

−R−1(δR)R−1Ṙ + R−1(δṘ) = δ̂Ω. (13.7.8)
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420 13.7 The Euler–Poincaré Equations

Let the skew matrix Σ̂ be defined by

Σ̂ = R−1δR (13.7.9)

and define the vector Σ by

Σ̂v = Σ× v. (13.7.10)

Note that

˙̂Σ = −R−1ṘR−1δR + R−1δṘ,

so

R−1δṘ = ˙̂Σ + R−1ṘΣ̂ (13.7.11)

substituting (13.7.11) and (13.7.9) into (13.7.8) gives

−Σ̂Ω̂ + ˙̂Σ + Ω̂Σ̂ = δ̂Ω,

that is,

δ̂Ω = ˙̂Σ + [Ω̂, Σ̂]. (13.7.12)

The identity [Ω̂, Σ̂] = (Ω × Σ)̂ holds by Jacobi’s identity for the cross
product, and so

δΩ = Σ̇ + Ω× Σ. (13.7.13)

These calculations prove the following:

Theorem 13.7.2. Hamilton’s variational principle

δ

∫ b

a

L dt = 0 (13.7.14)

on T SO(3) is equivalent to the reduced variational principle

δ

∫ b

a

l dt = 0 (13.7.15)

on R3 where the variations δΩ are of the form (13.7.13) with Σ(a) = Σ(b) =
0.

. To complete the proof of Theorem 13.7.1, it suffices to work out the
equations equivalent to the reduced variational principle (13.7.15). Since
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l(Ω) = 1
2 〈IΩ,Ω〉, and I is symmetric, we get

δ

∫ b

a

l dt =
∫ b

a

〈IΩ, δΩ〉 dt

=
∫ b

a

〈IΩ, Σ̇ + Ω× Σ〉 dt

=
∫ b

a

[〈
− d

dt
IΩ,Σ

〉
+ 〈IΩ,Ω× Σ〉

]
=
∫ b

a

〈
− d

dt
IΩ + IΩ× Ω,Σ

〉
dt,

where we have integrated by parts and used the boundary conditions Σ(b) =
Σ(a) = 0. Since Σ is otherwise arbitrary, (13.7.15) is equivalent to

− d

dt
(IΩ) + IΩ× Ω = 0,

which are Euler’s equations. ¥

We now generalize this procedure to an arbitrary Lie group and later
will make the direct link with the Lie–Poisson equations.

Theorem 13.7.3. Let G be a Lie group and let L : TG → R be a left
invariant Lagrangian. Let l : g → R be its restriction to the identity. For
a curve g(t) ∈ G, let ξ(t) = g(t)−1 · ġ(t); that is, ξ(t) = Tg(t)Lg(t)−1 ġ(t).
Then the following are equivalent:

(i) g(t) satisfies the Euler–Lagrange equations for L on G;

(ii) the variational principle

δ

∫
L(g(t), ġ(t)) dt = 0 (13.7.16)

holds, for variations with fixed endpoints;

(iii) the Euler–Poincaré equations hold:

d

dt

δl

δξ
= ad∗ξ

δl

δξ
; (13.7.17)

(iv) the variational principle

δ

∫
l(ξ(t)) dt = 0 (13.7.18)

holds on g, using variations of the form

δξ = η̇ + [ξ, η], (13.7.19)

where η vanishes at the endpoints.
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422 13.7 The Euler–Poincaré Equations

Proof. First of all, the equivalence of (i) and (ii) holds on the tangent
bundle of any configuration manifold Q, as we know from Chapter 8. To
see that (ii) and (iv) are equivalent, one needs to compute the variations
δξ induced on ξ = g−1ġ = TLg−1 ġ by a variation of g. We will do this
for matrix groups; see Bloch, Krishnaprasad, Marsden, and Ratiu [1994b]
for the general case. To calculate this, we need to differentiate g−1ġ in the
direction of a variation δg. If δg = dg/dε at ε = 0, where g is extended to
a curve gε, then,

δξ =
d

dε
g−1 d

dt
g,

while if η = g−1δg, then

η̇ =
d

dt
g−1 d

dε
g.

The difference δξ − η̇ is thus the commutator [ξ, η].
To complete the proof, we show the equivalence of (iii) and (iv). Indeed,

using the definitions and integrating by parts,

δ

∫
l(ξ)dt =

∫
δl

δξ
δξ dt

=
∫

δl

δξ
(η̇ + adξ η) dt

=
∫ [
− d

dt

(
δl

δξ

)
+ ad∗ξ

δl

δξ

]
η dt

so the result follows. ¥

There is of course a right invariant version of this theorem in which
ξ = ġg−1 and when (13.7.17), (13.7.19) aquire minus signs.

In coordinates, (13.7.17), reads as follows

d

dt

∂l

∂ξa
= Cb

daξ
d ∂l

∂xb
. (13.7.20)

Since the Euler–Lagrange and Hamilton equations on TQ and T ∗Q are
equivalent, it follows that the Lie–Poisson and Euler–Poincaré equations
are also equivalent. To see this directly , we make the following Legendre
transformation from g to g∗:

µ =
δl

δξ
, h(µ) = 〈µ, ξ〉 − l(ξ).

Note that

δh

δµ
= ξ +

〈
µ,

δξ

δµ

〉
−
〈

δl

δξ
,
δξ

δµ

〉
= ξ
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13.7 The Euler–Poincaré Equations 423

and so it is now clear that the Lie–Poisson and Euler–Poincaré equations
are equivalent.

We close this section by showing that the periodic KdV equation, (see
Example (c) in §3.2)

ut + 6uux + uxxx = 0

is an Euler–Poincaré equation on a certain Lie algebra called the Vira-
soro algebra v. These results were obtained in the Lie–Poisson context by
Gelfand and Dorfman [1979], Kirillov [1981], Ovsienko and Khesin [1987],
and Segal [1991]. See also Pressley and Segal [1986] and references therein.

We begin with the construction of the Virasoro algebra v. If one identifies
elements of X(S1) with periodic functions of period 1 endowed with the
Jacobi–Lie bracket

[u, v] = uv′ − u′v,

the Gelfand-Fuchs cocycle is defined by the expression

Σ(u, v) = γ

∫ 1

0

u′(x)v′′ (x)dx,

where γ ∈ R is an arbitrary constant. The Lie algebra X(S1) of vector
fields on the circle has a unique central extension by R determined by the
Gelfand-Fuchs cocycle. Therefore, (see (12.3.22) in remark 5 of §12.4), the
Lie algebra bracket on

v := {(u, a) | u ∈ X(S1), a ∈ R}

is given by

[(u, a), (v, b)] =
(
−uv′ + u′v, γ

∫ 1

0

u′(x)v′′(x) dx

)
since the left Lie bracket on X(S1) is given by the negative of the Jacobi–
Lie bracket for vector fields. Identify the dual of v with v by the L2-inner
product

〈(u, a), (v, b)〉 = ab +
∫ 1

0

u(x)v(x) dx.

We claim that the coadjoint action ad∗(u,a) is given by

ad∗(u,a)(v, b) = (bγu′′′ + 2u′v + uv′, 0).
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424 13.7 The Euler–Poincaré Equations

Indeed, if (u, a), (v, b), (w, c) ∈ v, we have〈
ad∗(u,a)(v, b), (w, c)

〉
= 〈(v, b), [(u, a), (w, c)]〉

=
〈

(v, b),
(
−uw′ + u′w, γ

∫ 1

0

u′(x)w′′(x) dx

)〉
= bγ

∫ 1

0

u′(x)w′′(x) dx−
∫ 1

0

v(x)u(x)w′(x) dx +
∫ 1

0

v(x)u′(x)w(x) dx.

Integrating the first term twice and the second term once by parts and
remembering that the boundary terms vanish by periodicity, this expresison
becomes

bγ

∫ 1

0

u′′′(x)w(x)dx +
∫ 1

0

(v(x)u(x))′w(x)dx +
∫ 1

0

v(x)u′(x)w(x)dx

=
∫ 1

0

(bγu′′′(x) + 2u′(x)v(x) + u(x)v′(x))w(x)dx

= 〈(bγu′′′ + 2u′v + uv′, 0), (w, c)〉 .

If F : v→ R, its functional derivative relative to the L2-pairing is given
by

δF

δ(u, a)
=
(

δF

δu
,
∂F

∂a

)
where δF/δu is the usual L2-functional derivative of F keeping a ∈ R fixed
and ∂F/∂a is the standard partial derivative of F keeping u fixed. The
Euler–Poincaré equations for right invariant systems given by l : v → R
becomes

d

dt

δl

δ(u, a)
= − ad∗(u,a)

δl

δ(u, a)
.

However,

ad∗(u,a)

δl

δ(u, a)
= ad∗(u,a)

(
δl

δu
,

∂l

∂a

)
=

(
γ

∂l

∂a
u′′′ + 2u′

δl

δu
+ u

(
δl

δu

)′
, 0

)
,

so that we get the system

d

dt

∂l

∂a
= 0

d

dt

δl

δu
= −γ

∂l

∂a
u′′′ − 2u′

δl

δu
− u

(
δl

δu

)′
.
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13.7 The Euler–Poincaré Equations 425

If

l(u, a) =
1
2

(
a2 +

∫ 1

0

u2(x) dx

)
,

then ∂l/∂a = a, δl/δu = u and the above equations become

da

dt
= 0

du

dt
= −γau′′′ − 3u′u.

(13.7.21)

Since a is constant, we get

ut + 3uxu + γau′′′ = 0. (13.7.22)

This equation is equivalent to the KdV equation upon rescaling time and
choosing the constant a appropriately. Indeed, let u(t, x) = v(τ(t), x) for
τ(t) = t/2. Then ux = vx and ut = −vτ/2 so that (13.7.22) becomes

vτ + 6vvx + 2γavxxx = 0,

which becomes the KdV equation (see §3.2) if we choose a = 1/2γ.
The Lie–Poisson formulation goes the following way. The (+) Lie–Poisson

bracket is given by

{f, h}(u, a) =
〈

(u, a),
[

δf

δ(u, a)
,

δh

δ(u, a)

]〉
=
∫ [

u

((
δf

δu

)′
δh

δu
− δf

δu

(
δh

δu

)′)

+aγ

(
δf

δu

)′(
δh

δu

)′′]
dx

so that the Lie–Poisson equations ḟ = {f, h} become

da

dt
= 0

du

dt
= −u′

(
δh

δu

)
− 2u

(
δh

δu

)′
− aγ

(
δh

δu

)′′′
.

(13.7.23)

Taking

h(u, a) =
1
2
a2 +

1
2

∫ 1

0

u2(x) dx,

we get ∂h/∂a = a, δh/δu = u and so (13.7.23) becomes (13.7.22) as was to
be expected and could have directly obtained by a Legendre transform.
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426 13.8 The Reduced Euler–Lagrange Equations

The conclusion is that the KdV equation is the expression in space coor-
dinates of the geodesic equations on the Virasoro group V endowed with the
right invariant metric whose value at the identity is the L2-inner product.
We shall not describe here the Virasoro group which is a central extension
of the diffeomorphism group on S1; we refer the reader to Pressley and
Segal [1986].

Exercises

¦ Exercise 13.7-1. Verify the coordinate form of the Euler–Poincaré equa-
tions.

¦ Exercise 13.7-2. Show that the Euler equations for a perfect fluid are
Euler–Poincaré equations. Find the variational principle (3) in Newcomb
[1962] and Bretherton [1970].

13.8 The Reduced Euler–Lagrange
Equations

As we have mentioned, the Lie–Poisson and Euler–Poincaré equations occur
for many systems besides the rigid body equations. They include the equa-
tions of fluid and plasma dynamics, for example. For many other systems,
such as a rotating molecule or a spacecraft with movable internal parts, one
has a combination of equations of Euler–Poincaré type and Euler–Lagrange
type. Indeed, on the Hamiltonian side, this process has undergone devel-
opment for quite some time, and is discussed at length in Volume II. On
the Lagrangian side, this process is also very interesting, and has been re-
cently developed by, amongst others, Marsden and Scheurle [1993a,b]. The
general problem is to drop Euler–Lagrange equations and variational prin-
ciples from a general velocity phase-space TQ to the quotient TQ/G by a
Lie group action of G on Q. If L is a G-invariant Lagrangian on TQ, it
induces a reduced Lagrangian l on TQ/G. We give a brief preview of the
general theory in this section. In fact, the material below can also act as
motivation for the general theory of connections, also introduced in Volume
II.

An important ingredient in this work is to introduce a connection A
on the principal bundle Q → S = Q/G, assuming that this quotient is
nonsingular. For example, the mechanical connection (see Kummer [1981],
Marsden [1992] and references therein), may be chosen for A. This connec-
tion allows one to split the variables into a horizontal and vertical part. Let
xα, also called “internal variables,” be coordinates for shape-space Q/G,
let ηa be coordinates for the Lie algebra g relative to a chosen basis, let l
be the Lagrangian regarded as a function of the variables xα, ẋα, ηa, and
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13.8 The Reduced Euler–Lagrange Equations 427

let Ca
db be the structure constants of the Lie algebra g of G.

If one writes the Euler–Lagrange equations on TQ in a local principal
bundle trivialization, with coordinates xα on the base and ηa in the fiber,
then one gets the following system of Hamel equations:

d

dt

∂l

∂ẋα
− ∂l

∂xα
= 0, (13.8.1)

d

dt

∂l

∂ηb
− ∂l

∂ηa
Ca
dbη

d = 0. (13.8.2)

However, this representation of the equations does not make global intrinsic
sense (unless Q→ S admits a global flat connection). The introduction of
a connection overcomes this and one can intrinsically and globally split the
original variational principle relative to horizontal and vertical variations.
One gets from one-form to the other by means of the velocity shift given
by replacing η by the vertical part relative to the connection

ξa = Aa
αẋα + ηa.

Here, Ad
α are the local coordinates of the connection A. This change of

coordinates is motivated from the mechanical point of view since the vari-
ables ξ have the interpretation of the locked angular velocity. The resulting
reduced Euler–Lagrange equations have the following form:

d

dt

∂l

∂ẋα
− ∂l

∂xα
=

∂l

∂ξa
(
Ba
αβẋ

β + Ba
αdξ

d
)
, (13.8.3)

d

dt

∂l

∂ξb
=

∂l

∂ξa
(Ba

bαẋα + Ca
dbξ

d). (13.8.4)

In these equations, Ba
αβ are the coordinates of the curvature B of A, Ba

dα =
Ca
bdA

b
α and Ba

bα = −Ba
αb.

It is interesting to note that the matrix[
Ba
αβ Ba

αd

Ba
dα Ca

bd

]
is itself the curvature of the connection regarded as residing on the bundle
TQ → TQ/G. Regarding the structure constants as a curvature tensor in
the special case Q = G may be regarded as a reformulation of the Mauer-
Cartan equations (see Theorem 9.1.11).

The variables ξa may be regarded as the rigid part of the variables on
the original configuration space, while xα are the internal variables. As in
Simo, Lewis, and Marsden [1991], the division of variables into internal and
rigid parts has deep implications for both stability theory and for bifurca-
tion theory, again, continuing along lines developed originally by Riemann,
Poincaré, and others. The main way this new insight is achieved is through
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428 13.8 The Reduced Euler–Lagrange Equations

a careful split of the variables, using the (mechanical) connection as one of
the main ingredients. This split puts the second variation of the augmented
Hamiltonian at a relative equilibrium as well as the symplectic form into
“normal form.” It is somewhat remarkable that they are simultaneously put
into a simple form. This link helps considerably with an eigenvalue analysis
of the linearized equations, and in Hamiltonian bifurcation theory; see, for
example, Bloch, Krishnaprasad, Marsden, and Ratiu [1994a].

One of the key results in Hamiltonian reduction theory says that the re-
duction of a cotangent bundle T ∗Q by a symmetry group G is a bundle over
T ∗S, where S = Q/G is shape-space, and where the fiber is either g∗, the
dual of the Lie algebra of G, or is a coadjoint orbit, depending on whether
one is doing Poisson or symplectic reduction. We refer to Montgomery,
Marsden, and Ratiu [1984] and Marsden [1992] and Volume II for details
and references. The reduced Euler–Lagrange equations give the analogue
of this structure on the tangent bundle.

Remarkably, equations (13.8.3) are very close in form to the equations for
a mechanical system with classical nonholonomic velocity constraints (see
Naimark and Fufaev [1972] and Koiller [1992].) The connection chosen in
that case is the one-form that determines the constraints. This link is made
precise in Bloch, Krishnaprasad, Marsden, and Murray [1994]. In addition,
this structure appears in several control problems, especially the problem
of stabilizing controls considered by Bloch, Krishnaprasad, Marsden, and
Sanchez [1992].

For systems with a momentum map J constrained to a specific value µ,
the key to the construction of a reduced Lagrangian system is the modifi-
cation of the Lagrangian L to the Routhian Rµ, which is obtained from the
Lagrangian by subtracting off the mechanical connection paired with the
constraining value µ of the momentum map. On the other hand, a basic
ingredient needed for the reduced Euler–Lagrange equations is a velocity
shift in the Lagrangian, the shift being determined by the connection, so
this velocity-shifted Lagrangian plays the role that the Routhian does in
the constrained theory.
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