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5
Hamiltonian Systems on Symplectic
Manifolds

Now we are ready to geometrize Hamiltonian mechanics to the context
of manifolds. First we make phase spaces nonlinear and then we study
Hamiltonian systems in this context.

5.1 Symplectic Manifolds

Definition 5.1.1. A symplectic manifold is a pair (P,Ω), where P is
a manifold and Ω is a closed (weakly) nondegenerate two-form on P . If Ω
is strongly nondegenerate, we speak of a strong symplectic manifold .

As in the linear case, strong nondegeneracy of the two-form Ω means that
at each z ∈ P, the bilinear form Ωz : TzP × TzP → R is nondegenerate,
that is, Ωz defines an isomorphism

Ω[z : TzP → T ∗z P.

For a (weak) symplectic form, the induced map Ω[ : X(P ) → X∗(P ) be-
tween vector fields and one-forms is one-to-one, but in general is not sur-
jective. We will see later that Ω is required to be closed, that is, dΩ = 0,
where d is the exterior derivative, so that the induced Poisson bracket sat-
isfies the Jacobi identity and so that the flows of Hamiltonian vector fields
will consist of canonical transformations. In coordinates zI on P in the
finite-dimensional case, if Ω = ΩIJ dzI ∧ dzJ (sum over all I < J), then
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dΩ = 0 becomes the condition

∂ΩIJ
∂zK

+
∂ΩKI
∂zJ

+
∂ΩJK
∂zI

= 0. (5.1.1)

Examples

(a) Symplectic Vector Spaces. If (Z,Ω) is a symplectic vector space,
then it is also a symplectic manifold. The requirement dΩ = 0 is satisfied
automatically since Ω is a constant form (that is, Ω(z) is independent of
z ∈ Z). ¨

(b) The cylinder S1 ×R with coordinates (θ, p) is a symplectic manifold
with Ω = dθ ∧ dp. ¨

(c) The torus T2 with periodic coordinates (θ, ϕ) is a symplectic manifold
with Ω = dθ ∧ dϕ. ¨

(d) The two-sphere S2 of radius r is symplectic with Ω the standard area
element Ω = r2 sin θ dθ ∧ dϕ on the sphere as the symplectic form. ¨

Given a manifold Q, we will show in Chapter 6 that the cotangent bun-
dle T ∗Q has a natural symplectic structure. When Q is the configura-
tion space of a mechanical system, T ∗Q is called the momentum phase
space . This important example generalizes the linear examples with phase
spaces of the form W ×W ∗ that we studied in Chapter 2.

Darboux’ Theorem. The next result says that, in principle, every strong
symplectic manifold is, in suitable local coordinates, a symplectic vector
space. (By contrast, a corresponding result for Riemannian manifolds is
not true unless they have zero curvature; that is, are flat.)

Theorem 5.1.2 (Darboux’ Theorem). Let (P,Ω) be a strong symplec-
tic manifold. Then in a neighborhood of each z ∈ P , there is a local coor-
dinate chart in which Ω is constant.

Proof. We can assume P = E and z = 0 ∈ E, where E is a Banach
space. Let Ω1 be the constant form equaling Ω(0). Let Ω′ = Ω1 − Ω and
Ωt = Ω + tΩ′, for 0 ≤ t ≤ 1. For each t, the bilinear form Ωt(0) = Ω(0)
is nondegenerate. Hence by openness of the set of linear isomorphisms of
E to E∗ and compactness of [0, 1], there is a neighborhood of 0 on which
Ωt is strongly nondegenerate for all 0 ≤ t ≤ 1. We can assume that this
neighborhood is a ball. Thus by the Poincaré lemma, Ω′ = dα for some
one-form α. Replacing α by α − α(0), we can suppose α(0) = 0. Define a
smooth time-dependent vector field Xt by

iXtΩt = −α,
. . . . . . . . . . . . . . . . . . . . . . . . . 15 January 1998—17h14 . . . . . . . . . . . . . . . . . . . . . . . . .
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which is possible since Ωt is strongly nondegenerate. Since α(0) = 0 we get
Xt(0) = 0, and so from the local existence theory for ordinary differential
equations, there is a ball on which the integral curves of Xt are defined for
a time at least one; see Abraham, Marsden, and Ratiu [1988], §4.1, for the
technical theorem. Let Ft be the flow of Xt starting at F0 = identity. By
the Lie derivative formula for time-dependent vector fields, we have

d

dt
(F ∗t Ωt)=F ∗t (£XtΩt) + F ∗t

d

dt
Ωt

=F ∗t diXtΩt + F ∗t Ω′ = F ∗t (d(−α) + Ω′) = 0.

Thus, F ∗1 Ω1 = F ∗0 Ω0 = Ω, so F1 provides a chart transforming Ω to the
constant form Ω1. ¥

This proof is due to Moser [1965]. Weinstein [1971] noted that it gen-
eralizes to the infinite-dimensional strong symplectic case. Unfortunately,
many interesting infinite-dimensional symplectic manifolds are not strong.
In fact, the analogue of Darboux’s theorem is not valid for weak symplectic
forms. For an example, see Exercise 5.1-3, and for conditions under which
it is valid, see Marsden [1981]. See also Olver [1988]. For an equivariant
Darboux theorem and refernces, see Dellnitz and Melbourne [1993].

Corollary 5.1.3. If (P,Ω) is a finite-dimensional symplectic manifold,
then P is even dimensional, and in a neighborhood of z ∈ P there are local
coordinates (q1, . . . , qn, p1, . . . , pn) (where dimP = 2n) such that

Ω =
n∑
i=1

dqi ∧ dpi. (5.1.2)

This follows from Darboux’s theorem and the canonical form for linear
symplectic forms. As in the vector space case, coordinates in which Ω takes
the above form are called canonical coordinates.

Corollary 5.1.4. If (P,Ω) is a 2n-dimensional symplectic manifold, then
P is oriented by the Liouville volume

Λ =
(−1)n(n−1)/2

n!
Ω ∧ · · · ∧ Ω (n times). (5.1.3)

In canonical coordinates (q1, . . . , qn, p1, . . . , pn), Λ has the expression

Λ = dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · · ∧ dpn. (5.1.4)

Thus, if (P,Ω) is a 2n-dimensional symplectic manifold, then (P,Λ) is
a volume manifold (that is, a manifold with a volume element). The
measure associated to Λ is called the Liouville measure. The factor
(−1)n(n−1)/2/n! is chosen so that in canonical coordinates, Λ has the ex-
pression (5.1.4).
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144 5.2 Symplectic Transformations

Exercises

¦ Exercise 5.1-1. Show how to construct (explicitly) canonical coordi-
nates for the symplectic form Ω = fµ on S2, where µ is the standard
area element and where f : S2 → R is a positive function.

¦ Exercise 5.1-2 (Moser [1965]). Let µ0 and µ1 be two volume elements
(nowhere vanishing n-forms) on the compact boundaryless n-manifold M
giving M the same orientation. Assume that

∫
M
µ0 =

∫
M
µ1. Show that

there is a diffeomorphism ϕ : M →M such that ϕ∗µ1 = µ0.

¦ Exercise 5.1-3. (Requires some functional analysis) Prove that Dar-
boux’ theorem fails for the following weak symplectic form. Let H be a
real Hilbert space and S : H → H a compact, self-adjoint, and positive op-
erator whose range is dense in H, but not equal to H. Let Ax = S+ ‖x‖2I
and

gx(e, f) = 〈Axe, f〉.

Let Ω be the weak symplectic form on H ×H associated to g. Show that
there is no coordinate chart about (0, 0) ∈ H ×H on which Ω is constant.

¦ Exercise 5.1-4. Use the method of proof of the Darboux Theorem to
show the following. Assume that Ω0 and Ω1 are two symplectic forms on
the compact manifold P such that [Ω0], [Ω1] are the cohomology classes
of Ω0 and Ω1 respectively in H2(P ;R). If for every t ∈ [0, 1], the form
Ωt := (1−t)Ω0 +Ω1 is non-degenerate, show that there is a diffeomorphism
ϕ : P −→ P such that ϕ∗Ω1 = Ω0.

¦ Exercise 5.1-5. Prove the following Relative Darboux Theorem. Let
S be a submanifold of P and assume that Ω0 and Ω1 are two strong sym-
plectic forms on P such that Ω0|S = Ω1|S. Then there is an open neigh-
borhood V of S in P and a diffeomorphism ϕ : V −→ ϕ(V ) ⊂ P such that
ϕ|S = identity on S and ϕ∗Ω1 = Ω0. (Hint: Use Exercise 4.2-6.)

Check
solution

5.2 Symplectic Transformations

Definition 5.2.1. Let (P1,Ω1) and (P2,Ω2) be symplectic manifolds. A
C∞-mapping ϕ : P1 → P2 is called symplectic or canonical if

ϕ∗Ω2 = Ω1. (5.2.1)

Recall that Ω1 = ϕ∗Ω2 means that for each z ∈ P1, and all v, w ∈ TzP1,
we have the following identity:

Ω1z(v, w) = Ω2ϕ(z)(Tzϕ · v, Tzϕ · w),
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where Ω1z means Ω1 evaluated at the point z and where Tzϕ is the tangent
(derivative) of ϕ at z.

If ϕ : (P1,Ω1) → (P2,Ω2) is canonical, the property ϕ∗(α ∧ β) = ϕ∗α ∧
ϕ∗β implies that ϕ∗Λ = Λ; that is, ϕ also preserves the Liouville measure.
Thus we get the following:

Proposition 5.2.2. A smooth canonical transformation between symplec-
tic manifolds of the same dimension is volume preserving and is a local
diffeomorphism.

The last statement comes from the inverse function theorem: if ϕ is
volume preserving, its Jacobian determinant is 1, so ϕ is locally invertible.
It is clear that the set of canonical diffeomorphisms of P form a subgroup
of Diff(P ), the group of all diffeomorphisms of P . This group, denoted
Diffcan(P ), plays a key role in the study of plasma dynamics.

If Ω1 and Ω2 are exact, say Ω1 = −dΘ1 and Ω2 = −dΘ2, then (5.2.1) is
equivalent to

d(ϕ∗Θ2 −Θ1) = 0. (5.2.2)

Let M ⊂ P1 be an oriented two manifold with boundary ∂M . Then if
(5.2.2) holds, we get

0 =
∫
M

d(ϕ∗Θ2 −Θ1) =
∫
∂M

(ϕ∗Θ2 −Θ1) ,

that is, ∫
∂M

ϕ∗Θ2 =
∫
∂M

Θ1. (5.2.3)

Proposition 5.2.3. The map ϕ : P1 → P2 is canonical iff (5.2.3) holds
for every oriented two manifold M ⊂ P1 with boundary ∂M .

The converse is proved by choosing M to be a small disk in P1 and
using the statement: if the integral of a two-form over any small disk van-
ishes, then the form is zero. The latter assertion is proved by contradiction,
constructing a two-form on a two-disk whose coefficient is a bump func-
tion. Equation (5.2.3) is an example of an integral invariant . For more
information, see Arnold [1989] and Abraham and Marsden [1978].

Exercises

¦ Exercise 5.2-1. Let ϕ : R2n → R2n be a map of the form ϕ(q, p) =
(q, p+α(q)). Use the canonical one-form to determine when ϕ is symplectic.

¦ Exercise 5.2-2. Let T6 be the six torus with symplectic form

Ω = dθ1 ∧ dθ2 + dθ3 ∧ dθ4 + dθ5 ∧ dθ6.
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Show that if ϕ : T6 → T6 is symplectic and M ⊂ T6 is a compact oriented
four-manifold with boundary, then∫

∂M

ϕ∗(Ω ∧Θ) =
∫
∂M

Ω ∧Θ,

where Θ = θ1 dθ2 + θ3 dθ4 + θ5 dθ6.

5.3 Complex Structures and Kähler
Manifolds

This section develops the relation between complex and symplectic geom-
etry a little further. It may be omitted on a first reading.

Complex Structures. We begin with the case of vector spaces. By a
complex structure on a real vector space Z, we mean a linear map J :
Z → Z such that J2 = −Identity. Setting iz = J(z) gives Z the structure
of a complex vector space.

Note that if Z is finite dimensional, the hypothesis on J implies that
(det J)2 = (−1)dimZ , so dimZ must be an even number since det J ∈ R.
The complex dimension of Z is half the real dimension. Conversely, if Z is
a complex vector space, it is also a real vector space by restricting scalar
multiplication to the real numbers. In this case, Jz = iz is the complex
structure on Z. As before, the real dimension of Z is twice the complex
dimension since the vectors z and iz are linearly independent.

We have already seen that the imaginary part of a complex inner product
is a symplectic form. Conversely, if H is a real Hilbert space and Ω is a
skew-symmetric weakly nondegenerate bilinear form on H, then there is a
complex structure J on H and a real inner product s such that

s(z, w) = −Ω(Jz, w). (5.3.1)

The expression

h(z, w) = s(z, w)− iΩ(z, w) (5.3.2)

defines a Hermitian inner product, and h or s is complete on H iff Ω is
strongly nondegenerate. (See Abraham and Marsden [1978], p.173, for the
proof.) Moreover, given any two of (s, J,Ω), there is at most one third
structure such that (5.3.1) holds.

If we identify Cn with R2n and write

z = (z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn) = ((x1, y1), . . . , (xn, yn)),

then

−Im 〈(z1, . . . , zn), (z′1, . . . , z
′
n)〉 = −Im(z1z

′
1 + · · ·+ znz

′
n)

= −(x′1y1 − x1y
′
1 + · · ·+ x′nyn − xny′n).
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Thus, the canonical symplectic form on R2n may be written

Ω(z, z′) = −Im 〈z, z′〉 = Re 〈iz, z′〉 , (5.3.3)

which, by (5.3.1), agrees with the convention that J : R2n → R2n is multi-
plication by i.

An almost complex stucture J on a manifold M is a smooth tangent
bundle isomorphism J : TM → TM covering the identity map on M such
that for each point z ∈M , Jz = J(z) : TzM → TzM is a complex structure
on the vector space TzM . A manifold with an almost complex structure is
called an almost complex manifold .

A manifold M is called a complex manifold if it admits an atlas
{(Uα, ϕα)} whose charts ϕα : Uα ⊂ M → E map to a complex Banach
space E and the transition functions ϕβ ◦ϕ−1

α : ϕα(Uα∩Uβ)→ ϕβ(Uα∩Uβ)
are holomorphic maps. The complex structure on E (multiplication by i)
induces via the chart maps ϕα an almost complex structure on each chart
domain Uα. Since the transition functions are biholomorphic diffeomor-
phisms, the almost complex structures on Uα ∩ Uβ induced by ϕα and ϕβ
coincide. This shows that a complex manifold is also almost complex. The
converse is not true.

If M is an almost complex manifold, TzM is endowed with the struc-
ture of a complex vector space. A Hermitian metric on M is a smooth
assignment of a (possibly weak) complex inner product on TzM for each
z ∈M . As in the case of vector spaces, the imaginary part of the Hermitian
metric defines a non-degenerate (real) two-form on M . The real part of a
Hermitian metric is a Riemannian metric on M . If the complex inner prod-
uct on each tangent space is strongly nondegenerate, the metric is strong ;
in this case both the real and imaginary parts of the Hermitian metric are
strongly nondegenerate over R.

Kähler Manifolds. An almost complex manifold M with a Hermitian
metric 〈 , 〉 is called a Kähler manifold , if M is a complex manifold and
the two-form −Im 〈 , 〉 is a closed two form on M . There is an equivalent
definition that is often useful: A Kähler manifold is a smooth manifold
with a Riemannian metric g and an almost complex structure J such that
Jz is g-skew for each z ∈ M and such that J is covariantly constant with
respect to g. (One requires some Riemannian geometry to understand this
definition—it will not be required in what follows.) The important fact
used later on is the following:

Any Kähler manifold is also symplectic, with symplectic form
given by

Ωz(vz, wz) = 〈Jzvz, wz〉 . (5.3.4)

In this second definition of Kähler manifolds, the condition dΩ = 0 follows
from J being covariantly constant. A strong Kähler manifold is a Kähler
manifold whose Hermitian inner product is strong.

. . . . . . . . . . . . . . . . . . . . . . . . . 15 January 1998—17h14 . . . . . . . . . . . . . . . . . . . . . . . . .
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Projective Spaces. Any complex Hilbert space H is trivially a strong
Kähler manifold. As an example of a nontrivial Kähler manifold, we shall
consider the projectivization PH of a complex Hilbert space H. Recall
from Example (f) of §2.3 that H is a symplectic vector space relative to
the quantum mechanical symplectic form

Ω(ψ1, ψ2) = −2~ Im 〈ψ1, ψ2〉 ,

where 〈 , 〉 is the Hermitian inner product on H, ~ is Planck’s constant, and
ψ1, ψ2 ∈ H. Recall also that PH is the space of complex lines through the
origin in H. Denote by π : H\{0} → PH the canonical projection which
sends a vector ψ ∈ H\{0} to the complex line it spans, denoted by [ψ] when
thought of as a point in PH and by Cψ when interpreted as a subspace
of H. The space PH is a smooth complex manifold, π is a smooth map,
and the tangent space T[ψ]PH is isomorphic to H/Cψ. π is a surjective
submersion. (See Abraham, Marsden, Ratiu [1988], Chapter 3.) Since the
kernel of

Tψπ : H → T[ψ]PH

is Cψ, the map Tψπ|(Cψ)⊥ is a complex linear isomorphism from (Cψ)⊥

to TψPH that depends on the chosen representative ψ in [ψ].
If U : H → H is a unitary operator (that is, U is invertible and

〈Uψ1, Uψ2〉 = 〈ψ1, ψ2〉

for all ψ1, ψ2 ∈ H), then the rule [U ][ψ] := [Uψ] defines a biholomorphic
diffeomorphism on PH.

Proposition 5.3.1.

(i) If [ψ] ∈ PH, ‖ψ‖ = 1, and ϕ1, ϕ2 ∈ (Cψ)⊥, the formula

〈Tψπ(ϕ1), Tψπ(ϕ2)〉 = 2~ 〈ϕ1, ϕ2〉 (5.3.5)

gives a well-defined strong Hermitian inner product on T[ψ]PH, that
is, the left hand side does not depend on the choice of ψ in [ψ]. The
dependence on [ψ] is smooth and so (5.3.5) defines a Hermitian metric
on PH called the Fubini-Study metric. This metric is invariant
under the action of the maps [U ], for all unitary operators U on H.

(ii) For [ψ] ∈ PH, ‖ψ‖ = 1, and ϕ1, ϕ2 ∈ (Cψ)⊥,

g[ψ](Tψπ(ϕ1), Tψπ(ϕ2)) = 2~Re 〈ϕ1, ϕ2〉 (5.3.6)

defines a strong Riemannian metric on PH invariant under all trans-
formations [U ].

. . . . . . . . . . . . . . . . . . . . . . . . . 15 January 1998—17h14 . . . . . . . . . . . . . . . . . . . . . . . . .
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(iii) For [ψ] ∈ PH, ‖ψ‖ = 1, and ϕ1, ϕ2 ∈ (Cψ)⊥,

Ω[ψ](Tψπ(ϕ1), Tψπ(ϕ2)) = −2~ Im 〈ϕ1, ϕ2〉 (5.3.7)

defines a strong symplectic form on PH invariant under all transfor-
mations [U ].

Proof. We first prove1 (i). If λ ∈ C\{0}, then π(λ(ψ+ tϕ)) = π(ψ+ tϕ),
and since

(Tλψπ)(λϕ) =
d

dt
π(λψ + tλϕ)

∣∣∣∣
t=0

=
d

dt
π(ψ + tϕ)

∣∣∣∣
t=0

= (Tψπ)(ϕ),

we get (Tλψπ)(λϕ) = (Tψπ)(ϕ). Thus, if ‖λψ‖ = ‖ψ‖ = 1, it follows that
|λ| = 1. We have by (5.3.5),

〈(Tλψπ)(λϕ1), (Tλψπ)(λϕ2)〉 = 2~ 〈λϕ1, λϕ2〉 = 2~|λ|2 〈ϕ1, ϕ2〉
= 2~ 〈ϕ1, ϕ2〉 = 〈(Tψπ)(ϕ1), (Tψπ)(ϕ2)〉 .

This shows that the definition (5.3.5) of the Hermitian inner product is
independent on the normalized representative ψ ∈ [ψ] chosen in order to
define it. This Hermitian inner product is strong since it coincides with the
inner product on the complex Hilbert space (Cψ)⊥.

A straightforward computation (see exercise 5.3-3) shows that for ψ ∈
H\{0} and ϕ1, ϕ2 ∈ H arbitrary, the Hermitian metric is given by

〈Tψπ(ϕ1), Tψπ(ϕ2)〉 = 2~‖ψ‖−2(〈ϕ1, ϕ2〉 − ‖ψ‖−2 〈ϕ1, ψ〉 〈ψ,ϕ2〉). (5.3.8)

Since the right hand side is smooth in ψ ∈ H\{0} and this formula drops
to PH, it follows that (5.3.5) is smooth in [ψ].

If U is a unitary map on H and [U ] is the induced map on PH, we have

T[ψ][U ] · Tψπ(ϕ) = T[ψ][U ] · d
dt

[ψ + tϕ]
∣∣∣∣
t=0

=
d

dt
[U ][ψ + tϕ]

∣∣∣∣
t=0

=
d

dt
[U(ψ + tϕ)]

∣∣∣∣
t=0

= TUψπ(Uϕ).

Therefore, since ‖Uψ‖ = ‖ψ‖ = 1 and 〈Uϕj , Uψ〉 = 0, we get by (5.3.5),〈
T[ψ][U ] · Tψπ(ϕ1), T[ψ][U ] · Tψπ(ϕ2)

〉
= 〈TUψπ(Uϕ1), TUψπ(Uϕ2)〉
= 〈Uϕ1, Uϕ2〉 = 〈ϕ1, ϕ2〉
= 〈Tψπ(ϕ1), Tψπ(ϕ2)〉 ,

1One can give a conceptually cleaner, but more advanced approach to this process
using general reduction theory. The proof given here is by a direct argument.
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which proves the invariance of the Hermitian metric under the action of
the transformation [U ].

Part (ii) is obvious as the real part of the Hermitian metric (5.3.5).
Finally we prove (iii). From the invariance of the metric it follows that

the form Ω is also invariant under the action of unitary maps, that is,
[U ]∗Ω = Ω. So, also [U ]∗dΩ = dΩ. Now consider the unitary map U0 on H
defined by U0ψ = ψ and U0 = −Identity on (Cψ)⊥. Then from [U0]∗Ω = Ω
we have for ϕ1, ϕ2, ϕ3 ∈ (Cψ)⊥

dΩ([ψ])(Tψπ(ϕ1), Tψπ(ϕ2), Tψπ(ϕ3))
= dΩ([ψ])(T[ψ][U0] · Tψπ(ϕ1), T[ψ][U0] · Tψπ(ϕ2), T[ψ][U0] · Tψπ(ϕ3)).

But
T[ψ][U0] · Tψπ(ϕ) = Tψπ(−ϕ) = −Tψπ(ϕ),

which implies by trilinearity of dΩ that dΩ = 0.
The symplectic form Ω is strongly nondegenerate since on T[ψ]PH it

restricts to the corresponding quantum mechanical symplectic form on the
Hilbert space (Cψ)⊥. ¥

The results above prove that PH is an infinite dimensional Kähler man-
ifold on which the unitary group U(H) acts by isometries. This can be
generalized to Grassmannian manifolds of finite (or infinite) dimensional
subspaces of H, and even more, to flag manifolds (see Besse [1987], Pressley
and Segal [1985]).

Exercises

¦ Exercise 5.3-1. On Cn, show that Ω = −dΘ, where Θ(z)·w = 1
2 Im 〈z, w〉.

¦ Exercise 5.3-2. Let P be a manifold that is both symplectic, with sym-
plectic form Ω and is Riemannian, with metric g.

(a) Show that P has an almost complex structure J such that Ω(u, v) =
g(Ju, v) if and only if

Ω(∇F, v) = −g(XF , v)

for all F ∈ F(P ).

(b) Under the hypothesis of (a), show that a Hamiltonian vector field
XH is locally a gradient iff £∇HΩ = 0.

¦ Exercise 5.3-3. Show that for any vectors ϕ1, ϕ2 ∈ H and ψ 6= 0 the
Fubini-Study metric can be written:

〈Tψπ(ϕ1), Tψπ(ϕ2)〉 = 2~‖ψ‖−2(〈ϕ1, ϕ2〉 − ‖ψ‖−2 〈ϕ1, ψ〉 〈ψ,ϕ2〉).
. . . . . . . . . . . . . . . . . . . . . . . . . 15 January 1998—17h14 . . . . . . . . . . . . . . . . . . . . . . . . .
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Conclude that the Riemannian metric and symplectic forms are given by

g[ψ](Tψπ(ϕ1), Tψπ(ϕ2)) =
2~
‖ψ‖4 Re(〈ϕ1, ϕ2〉 ‖ψ‖2 − 〈ϕ1, ψ〉 〈ψ,ϕ2〉)

and

Ω[ψ](Tψπ(ϕ1), Tψπ(ϕ2)) = − 2~
‖ψ‖4 Im(〈ϕ1, ϕ2〉 ‖ψ‖2 − 〈ϕ1, ψ〉 〈ψ,ϕ2〉).

¦ Exercise 5.3-4. Prove that dΩ = 0 on PH directly without using the
invariance under the maps [U ], for U a unitary operator on H.

¦ Exercise 5.3-5. For Cn+1, show that in a projective chart of CPn the
symplectic form Ω is given by:

(1 + |z|2)−1(dσ − (1 + |z|2)−1σ ∧ σ),

where d|z|2 = σ+σ (explicitly, σ =
∑n+1
i=1 zidzi). Then show that dΩ = 0.

Note the similarity between this formula and the corresponding one in
5.3-3.

Tudor: Reword

Ex 5.3-5

(confusion

over

coordinates).

Tudor---see

next page

5.4 Hamiltonian Systems

Definition 5.4.1. Let (P,Ω) be a symplectic manifold. A vector field X
on P is called Hamiltonian if there is a function H : P → R such that

iXΩ = dH; (5.4.1)

that is, for all v ∈ TzP , we have the identity

Ωz(X(z), v) = dH(z) · v.

In this case we write XH for X. The set of all Hamiltonian vector fields on
P is denoted XHam(P ). Hamilton’s equations are the evolution equations

ż = XH(z).

In finite dimensions, Hamilton’s equations in canonical coordinates are

dqi

dt
=
∂H

∂pi
,

dpi

dt
= −∂H

∂qi
.
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152 5.4 Hamiltonian Systems

Vector Fields and Flows. A vector field X is called locally Hamilto-
nian if iXΩ is closed. This is equivalent to £XΩ = 0, where £XΩ denotes
Lie differentiation of Ω along X, because

£XΩ = iXdΩ + diXΩ = diXΩ.

If X is locally Hamiltonian, it follows from the Poincaré lemma that there
locally exists a function H such that iXΩ = dH, so locally X = XH

and thus the terminology is consistent. Moreover, the flow ϕt of a locally
Hamiltonian vector field X satisfies ϕ∗tΩ = Ω since

d

dt
ϕ∗tΩ = ϕ∗t£XΩ = 0,

and thus one gets the following:

Proposition 5.4.2. The flow ϕt of a vector field X consists of symplectic
transformations (that is, for each t, ϕ∗tΩ = Ω where defined) if and only if
X is locally Hamiltonian.

A constant vector field on the torus T2 gives an example of a locally
Hamiltonian vector field that is not Hamiltonian. (See Exercise 5.4-1.)

Energy Conservation. If XH is Hamiltonian with flow ϕt, then

d

dt
(H ◦ ϕt) = ϕ∗tXH [H] = ϕ∗tΩ(XH , XH) = 0, (5.4.2)

since Ω is skew. Thus H ◦ϕt is constant in t. We have proved the following:

Proposition 5.4.3 (Conservation of Energy). If ϕt is the flow of XH

on the symplectic manifold P , then H ◦ ϕt = H (where defined).

Transformation of Hamiltonian Systems. The same argument given
in the vector space case proves:

Proposition 5.4.4. A diffeomorphism ϕ : P1 → P2 of symplectic mani-
folds is symplectic if and only if it satisfies

ϕ∗XH = XH◦ϕ (5.4.3)

for all functions H : U → R (such that XH is defined) where U is any open
subset of P2.

The same qualifications on technicalities pertinent to the infinite-dimen-
sional case that were discussed for vector spaces apply to the present con-
text as well. For instance, given H, there is no a priori guarantee that XH

exists: we usually assume it abstractly and verify it in examples. Also, we
may wish to deal with XH ’s that have dense domains rather than every-
where defined smooth vector fields. These technicalities are important, but
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do not affect many of the main goals of this book. We shall, for simplic-
ity, deal only with everywhere defined vector fields and refer the reader
to Chernoff and Marsden [1974] and Marsden and Hughes [1983] for the
general case. We shall also tacitly restrict our attention to functions which
have Hamiltonian vector fields. Of course in the finite-dimensional case
these technical problems disappear.

Exercises

¦ Exercise 5.4-1. Let X be a constant nonzero vector field on the two-
torus. Show that X is locally Hamiltonian but is not globally Hamiltonian.

¦ Exercise 5.4-2. Show that the bracket of two locally Hamiltonian vector
fields on a symplectic manifold (P,Ω) is globally Hamiltonian.

¦ Exercise 5.4-3. Consider the equations on C2 given by

ż1 = −iw1z1 + ipz2 + iz1(a|z1|2 + b|z2|2),
ż2 = −iw2z2 + iqz1 + iz2(c|z1|2 + d|z2|2).

Show that this system is Hamiltonian iff p = q and b = c with

H =
1
2
(
w2|z2|2 + w1|z1|2

)
− pRe(z1z2)−

a

4
|z1|4 −

b

2
|z1z2|2 −

d

4
|z2|4.

¦ Exercise 5.4-4. Let (P,Ω) be a symplectic manifold and ϕ : S −→ P
an immersion. ϕ is called a coisotropic immersion if Tsϕ(TsS) is a
coisotropic subspace of Tϕ(s)P for every s ∈ S. This means that

[Tsϕ(TsS)]Ω(s) ⊂ Tsϕ(TsS)

for every s ∈ S (see Exercise 2.3-5). If (P,Ω) is a strong symplectic man-
ifold, show that ϕ : S −→ P is a coisotropic immersion if and only if
XH(ϕ(s)) ∈ Tsϕ(TsS) for all s ∈ S, all open neighborhoods U of ϕ(s) in
P , and all smooth functions H : U −→ R satisfying H|ϕ(S)∩U = constant

5.5 Poisson Brackets on Symplectic
Manifolds

Analogous to the vector space treatment, we define the Poisson bracket
of two functions F,G : P → R by

{F,G}(z) = Ω(z)(XF (z), XG(z)). (5.5.1)

From Proposition 5.4.4 we get (see the proof of Proposition 2.7.5):
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Proposition 5.5.1. A diffeomorphism ϕ : P1 → P2 is symplectic if and
only if

{F,G} ◦ ϕ = {F ◦ ϕ,G ◦ ϕ} (5.5.2)

for all functions F,G ∈ F(U), where U is an arbitrary open subset of P2.

Using this, Proposition 5.4.2 shows that

Proposition 5.5.2. If ϕt is the flow of a Hamiltonian vector field XH

(or a locally Hamiltonian vector field), then

ϕ∗t {F,G} = {ϕ∗tF,ϕ∗tG}

for all F,G ∈ F(P ) (or restricted to an open set if the flow is not every-
where defined).

Corollary 5.5.3. The following derivation identity holds:

XH [{F,G}] = {XH [F ], G}+ {F,XH [G]} (5.5.3)

where we use the notation XH [F ] = £XHF for the derivative of F in the
direction XH .

Proof. Differentiate the identity

ϕ∗t {F,G} = {ϕ∗tF,ϕ∗tG}

in t at t = 0, where ϕt is the flow of XH . The left-hand side clearly gives
the left side of (5.5.3). To evaluate the right-hand side, first notice that

Ω[z

[
d

dt

∣∣∣∣
t=0

Xϕ∗tF (z)
]

=
d

dt

∣∣∣∣
t=0

Ω[zXϕ∗tF (z)

=
d

dt

∣∣∣∣
t=0

d(ϕ∗tF )(z)

= (dXH [F ])(z) = Ω[z(XXH [F ](z)).

Thus,

d

dt

∣∣∣∣
t=0

Xϕ∗tF = XXH [F ].

Therefore,

d

dt

∣∣∣∣
t=0

{ϕ∗tF,ϕ∗tG} =
d

dt

∣∣∣∣
t=0

Ωz(Xϕ∗tF (z), Xϕ∗tG(z)

= Ωz(XXH [F ], XG(z)) + Ωz(XF (z), XXH [G](z))
= {XH [F ], G}(z) + {F,XH [G]}(z). ¥
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Lie Algebras and Jacobi’s Identity. The above development leads to
important insight into Poisson brackets.

Proposition 5.5.4. The functions F(P ) form a Lie algebra under the
Poisson bracket.

Proof. Since {F,G} is obviously real bilinear and skew-symmetric, the
only thing to check is Jacobi’s identity. From {F,G} = iXFΩ(XG) =
dF (XG) = XG[F ], we have {{F,G}, H} = XH [{F,G}] and so by Corollary
5.5.3 we get

{{F,G}, H} = {XH [F ], G}+ {F,XH [G]}
= {{F,H}, G}+ {F, {G,H}}, (5.5.4)

which is Jacobi’s identity. ¥

This derivation gives us additional insight: Jacobi’s identity is just the
infinitesimal statement of ϕt being canonical .

In the same spirit, one can check that if Ω is a nondegenerate two-form
with the Poisson bracket defined by (5.5.1), then the Poisson bracket satis-
fies the Jacobi identity if and only if Ω is closed (see Exercise 5.5-1).

The Poisson bracket-Lie derivative identity

{F,G} = XG[F ] = −XF [G] (5.5.5)

we derived in this proof will be useful.

Proposition 5.5.5. The set of Hamiltonian vector fields XHam(P ) is a
Lie subalgebra of X(P ) and, in fact,

[XF , XG] = −X{F,G}. (5.5.6)

Proof. As derivations,

[XF , XG][H] = XFXG[H]−XGXF [H]
= XF [{H,G}]−XG[{H,F}]
= {{H,G}, F} − {{H,F}, G}
= −{H, {F,G}} = −X{F,G}[H],

by Jacobi’s identity. ¥

Proposition 5.5.6. We have

d

dt
(F ◦ ϕt) = {F ◦ ϕt, H} = {F,H} ◦ ϕt, (5.5.7)

where ϕt is the flow of XH and F ∈ F(P ).
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Proof. By (5.5.5) and the chain rule,

d

dt
(F ◦ ϕt)(z) = dF (ϕt(z)) ·XH(ϕt(z)) = {F,H}(ϕt(z)).

Since ϕt is symplectic, this becomes

{F ◦ ϕt, H ◦ ϕt}(z)
which also equals {F ◦ ϕt, H}(z) by conservation of energy. This proves
(5.5.7). ¥

Equations in Poisson Bracket Form. Equation (5.5.7), often written
more compactly as

Ḟ = {F,H}, (5.5.8)

is called the equation of motion in Poisson bracket form . We indi-
cated in Chapter 1 why the formulation (5.5.8) is important.

Corollary 5.5.7. F ∈ F(P ) is a constant of the motion for XH iff
{F,H} = 0.

Proposition 5.5.8. Assume that the functions f, g, and {f, g} are inte-
grable relative to the Liouville volume Λ ∈ Ω2n(P ) on a 2n-dimensional
symplectic manifold (P,Ω). Then∫

P

{f, g}Λ =
∫
∂P

f iXgΛ = −
∫
∂P

giXfΛ.

Proof. Since £XgΩ = 0, it follows that £XgΛ = 0 so that div(fXg) =
Xg[f ] = {f, g}. Therefore, by Stokes’ theorem∫

P

{f, g}Λ =
∫
P

div(fXg)Λ =
∫
P

£fXgΛ =
∫
P

difXgΛ =
∫
∂P

f iXgΛ,

the second equality following by skew-symmetry of the Poisson bracket. ¥

Corollary 5.5.9. Assume that f, g, h ∈ F(P ) have compact support or
decay fast enough such that they and their Poisson brackets are L2 in-
tegrable relative to the Liouville volume on a 2n-dimensional symplectic
manifold (P,Ω). Assume also that at least one of f and g vanish on ∂P ,
if ∂P 6= ∅. Then the L2-inner product is bi-invariant on the Lie algebra
(F(P ), { , }), that is, ∫

P

f{g, h}Λ =
∫
P

{f, g}hΛ.

Proof. From {hf, g} = h{f, g}+ f{h, g} and Proposition 5.5.7,

0 =
∫
P

{hf, g}Λ =
∫
P

h{f, g}Λ +
∫
P

f{h, g}Λ

which proves the corollary. ¥
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Exercises

¦ Exercise 5.5-1. Let Ω be a nondegenerate two-form on a manifold P .
Form Hamiltonian vector fields and the Poisson bracket using the same
definitions as in the symplectic case. Show that Jacobi’s identity holds if
and only if the two-form Ω is closed.

¦ Exercise 5.5-2. Let P be a compact boundaryless symplectic manifold.
Show that the space of functions F0(P ) = {f ∈ F(P ) |

∫
P
fΛ = 0} is a Lie

subalgebra of (F(P ), { , }) isomorphic to the Lie algebra of Hamiltonian
vector fields on P .

¦ Exercise 5.5-3. Using the complex notation zj = qj + ipj , show that
the symplectic form on Cn may be written as

Ω =
i

2

n∑
k=1

dzk ∧ dz̄k,

and the Poisson bracket may be written

{F,G} =
2
i

n∑
k=1

(
∂F

∂zk
∂G

∂z̄k
− ∂G

∂zk
∂F

∂z̄k

)
.

¦ Exercise 5.5-4. Let J : C2 → R be defined by

J =
1
2
(|z1|2 − |z2|2).

Show that

{H, J} = 0,

where H is given in Exercise 5.4-3.

¦ Exercise 5.5-5. Let (P,Ω) be a 2n-dimensional symplectic manifold.
Show that the Poisson bracket may be defined by

{F,G}Ωn = γdF ∧ dG ∧ Ωn−1

for a suitable constant γ.

¦ Exercise 5.5-6. Let ϕ : S −→ P be a coisotropic immersion (see Exer-
cise 5.4-4). Let F,H : P −→ R be smooth functions such that d(ϕ∗F )(s),
(ϕ∗H)(s) vanish on (Tsφ)−1([Tsϕ(TsS)]Ω(ϕ(s))) for all s ∈ S. Show that
ϕ∗{F,H} depends only on ϕ∗F and ϕ∗H.
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