This is page 103
Printer: Opaque this

3

An Introduction to
Infinite-Dimensional Systems

A common choice of configuration space for classical field theory is an
infinite-dimensional vector space of functions or tensor fields on space or
spacetime, the elements of which are called fields. Here we relate our
treatment of infinite-dimensional Hamiltonian systems discussed in §2.1
to classical Lagrangian and Hamiltonian field theory and then give exam-
ples. Classical field theory is a large subject with many aspects not covered
here; we treat only a few topics that are basic to subsequent developments;
see Chapters 6 and 7 for additonal information and references.

3.1 Lagrange’s and Hamilton’s Equations
for Field Theory

As with finite-dimensional systems, one can begin with a Lagrangian and
a variational principle, and then pass to the Hamiltonian via the Legendre
transformation. At least formally, all the constructions we did in the finite-
dimensional case go over to the infinite-dimensional one.

For instance, suppose we choose our configuration space @ = F(R?) to
be the space of fields ¢ on R3. Our Lagrangian will be a function L(y, ¢)
from @ x @ to R. The variational principle is

5/b L(p,¢)dt =0, (3.1.1)
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which is equivalent to the Euler-Lagrange equations

d oL 6L
—— == 1.2
dtép  op (3.1.2)
in the usual way. Here,
oL
= — 1.
T 5% (3.1.3)

is the conjugate momentum which we regard as a density on R?, as in
Chapter 2. The corresponding Hamiltonian is

Hip,m) = / 76— L(, 9) (3.1.4)

in accordance with our general theory. We also know that the Hamiltonian
should generate the canonical Hamilton equations. We verify this now.

Proposition 3.1.1. Let Z = F(R3) x Den(R3), with Q defined as in
Ezample (b) of §2.3. Then the Hamiltonian vector field Xpy : Z — Z
corresponding to a given energy function H : Z — R is given by

6H 6H
Xg=(—,—]. 1.
H (677’ (590) (3.1.5)

Hamilton’s equations on Z are

dp 6H or  OH
5—57 a—_%. (3.1.6)

Remarks.

1. The symbols F and Den stand for function spaces included in the space
of all functions and densities, chosen appropriate to the functional analy-
sis needs of the particular problem. In practice this often means, among
other things, that appropriate conditions at infinity are imposed to permit
integration by parts.

2. The equations of motion for a curve z(t) = (¢(t), 7 (t)) written in the
form Q(dz/dt,6z) = dH(z(t)) -6z for all 6z € Z with compact support, are
called the weak form of the equations of motion. They can still be
valid when there is not enough smoothness or decay at infinity to justify
the literal equality dz/dt = X (z); this situation can occur, for example,
if one is considering shock waves. ¢
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3.2 Examples: Hamilton’s Equations 105

Proof of Proposition 3.1.1. To derive the partial functional deriva-
tives, we use the natural pairing

(,): F(R®) x Den(R*) — R, where (p,7)= /gmr' d, (3.1.7)

where we write 7 = 7'd®x € Den. Recalling that § H /8¢ is a density, let

_(sH _oH
S\ 6 bp )T
We need to verify that Q(X (p, ), (6p,6m)) =dH (p,m) - (6p, 67). Indeed,

QX (@, ), (8¢, 67)) Q(( ) (5<p,67r)>
/‘2— (67)'d>x /(5(,0(61{) d*z
~(5eim) - (055)
=D
=dH

~H(p,m) - ém + D, H(p, ) - bp
(g, m) - (6, 6m). u

3.2 Examples: Hamilton’s Equations

(a) The Wave Equation. Consider Z = F(R3) x Den(R?) as above.
Let ¢ denote the configuration variable, that is, the first component in
the phase space F(R3) x Den(R?), and interpret ¢ as a measure of the
displacement from equilibrium of a homogeneous elastic medium. Writing
7’ = pdp/dt, where p is the mass density, the kinetic energy is

For small displacements ¢, one assumes a linear restoring force such as the
one given by the potential energy

k
R

for an (elastic) constant k. Because we are considering a homogeneous
medium, p and k are constants, so let us work in units in which they are
unity. Nonlinear effects can be modeled in a naive way by introducing a
nonlinear term, U(yp) into the potential. However, for an elastic medium
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one really should use constitutive relations based on the principles of con-
tinuum mechanics; see Marsden and Hughes [1983]. For the naive model,
the Hamiltonian H : Z — R is the total energy

1 1
He.m = [ [3002 + 5IVelP 106 o 21)
Using the definition of the functional derivative, we find that
OH , OH 9 , 3
— = — =(-V U d’z. 3.2.2
=T G = (VR Ul (3:2.2
Therefore, the equations of motion are
dp , o' 9 ,
o — =V -U'(y), 3.2.3
or, in second-order form,
&
5 Vi —U'(¢). (3.2.4)

Various choices of U correspond to various physical applications. When
U’ = 0, we get the linear wave equation, with unit propagation velocity.
Another choice, U(p) = $m?p? + Ap*, occurs in the quantum theory of
self-interacting mesons; the parameter m is related to the meson mass, and
©* governs the nonlinear part of the interaction. When A = 0, we get

toalt

2 _ 2

Vop — gz =P (3.2.5)
which is called the Klein-Gordon equation. ¢

Technical Aside. For the wave equation, one appropriate choice of func-
tion space is Z = H'(R3) x L3 (R3), where H'(R?) denotes the H'-
functions on R3, that is, functions which, along with their first deriva-
tives, are square integrable, and L} (R?) denotes the space of densities
7w = 7’ d®x, where the function 7’ on R? is square integrable. Note that the
Hamiltonian vector field

Xule,m) = (7', (Vo - U'(p))d*z)

is defined only on the dense subspace H%(R3) x H} (R?) of Z. This is a
common occurrence in the study of Hamiltonian partial differential equa-
tions; we return to this in §3.3. ¢

In the preceding example, 2 was given by the canonical form with the
result that the equations of motion were in the standard form (3.1.5). In ad-
dition, the Hamiltonian function was given by the actual energy of the sys-
tem under consideration. We now give examples in which these statements
require reinterpretation but which nevertheless fall into the framework of
the general theory developed so far.
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(b) The Schrédinger Equation. Let H be a complex Hilbert space,
for example, the space of complex-valued functions ¥ on R? with the inner
product

(Wr, o) = / b ()P () oz,

where the overbar denotes complex conjugation. For a self-adjoint, complex-
linear operator Hgp, : H — H, the Schrédinger equation is
oY

ihzr = Hopt), (3.2.6)

where h is Planck’s constant. Define

—1
A - FHOP

so that the Schrodinger equation becomes

o

5 Ad. (3.2.7)
The symplectic form on H is given by Q(¢1,12) = —2hIm (1, 102) . Self-
adjointness of H,p is a condition stronger than symmetry and is essential
for proving well-posedness of the initial-value problem for (3.2.6); for an
exposition, see, for instance, Abraham, Marsden, and Ratiu [1988]. Histor-
ically, it was Kato [1950] who established this for important problems such
as the hydrogen atom.

From §2.7, we know that since Hop, is symmetric, A is Hamiltonian.

The Hamiltonian is

H() = h(iAp, ) = (Hopth, ) (3.2.8)

which is the expectation value of H,, at v, defined by (Ho,p) (¢) =
(Hopth, ). ¢

(c) The Korteweg-de Vries (KdV) Equation. Denote by Z the vec-
tor subspace F(R) consisting of those functions v with |u(z)| decreasing
sufficiently fast as © — Zoo so that the integrals we will write are de-
fined and integration by parts is justified. As we shall see later, the Poisson
brackets for the KdV equation are quite simple, and historically they were
found first (see Gardner [1971] and Zakharov [1971, 1974]). To be consis-
tent with our exposition, we begin with the somewhat more complicated
symplectic structure. Pair Z with itself using the L? inner product. Let the
KdV symplectic structure €2 be defined by

Quy, up) = % < [ Z[ﬁl(:c)uQ(x) ~ i (2)un ()] dx) , (3.2.9)
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108 3.2 Examples: Hamilton’s Equations

where @ denotes a primitive of u, that is,
x
= / u(y) dy.
— 00

In §8.5 we shall see a way to construct this form. The form Q is clearly
skew-symmetric. Note that if u; = dv/0x for some v € Z, then

/ "t (@)un (x) da

— 00

_ / () 8ﬁalix) dz

— 00

T /_Z iy (2)us(x) da
_ </Z ag(;) dm) (/Z s (x) dx) - /O; 1 (2)un(z) dz
- <v($)’(:o) (/O:o s () dx) —~ O:O i (x)us(z

=— /00 Gy (x)ug(z) da.

Thus, if u;(x) = Ov(x)/0x, then 2 can be written as

_ ﬁl(x)ﬁz(x)‘

) dx

oo

Quy,ug) = /DO Gy (x)ug(z) de = / v(x)ug(z) da. (3.2.10)

—00 — 00

To prove weak nondegeneracy of 2, we check that if v # 0, there is a w
such that Q(w,v) # 0. Indeed, if v # 0 and we let w = Jv/dz, then w # 0
because v(x) — 0 as |z| — oco. Hence by (3.2.10),

Qw,v) = Q (%,v) = /OO (v(x))2 dz # 0.

— 00

Suppose that a Hamiltonian H : Z — R is given. We claim that the
corresponding Hamiltonian vector field Xy is given by

Xp(u) = a% (i—f) . (3.2.11)

Indeed, by (3.2.10),

QXn().w) = [

< 6H

N E(x)w(x) dz =dH(v) - w.

It follows from (3.2.11) that the corresponding Hamilton equations are

0 (6H
U = O (E) , (3.2.12)
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3.2 Examples: Hamilton’s Equations 109

where, in (3.2.12) and in the following, subscripts denote derivatives. As a
special case, consider the function

1 o0
Hl(u)z——/ u® da
6./
Then
0 6H,
or ou o

and so (3.2.12) becomes the one-dimensional transport equation
ut + v, = 0. (3.2.13)

Next, let
oo 1 .
Hy(u) = / <§ui - us) dx; (3.2.14)
then (3.2.12) becomes

up + 6uty + Ugre = 0. (3.2.15)

This is the Korteweg-de Vries (KdV) equation, describing shallow
water waves. For a concise presentation of its famous complete set of in-
tegrals, see Abraham and Marsden [1978], §6.5, and for more information,
see Newell [1985].

Travelling Waves. If we look for traveling wave solutions of (3.2.15),
that is, u(x,t) = (z — ct), for a constant ¢ > 0 and a positive function ¢,
we see that u satisfies the KAV equation iff ¢ satisfies

e’ —6pp’ — " = 0. (3.2.16)
Integrating once gives
cp—3p2 - =C, (3.2.17)

where C' is a constant. This equation is Hamiltonian in the canonical vari-
ables (¢, ¢') with Hamitonian function

1 c
hp,¢') = 5(#) = 59 +¢° + Cp. (3.2.18)

From conservation of energy, h(p, ¢’) = D, it follows that

¢ = ++/cp? — 203 —2Cp + 2D, (3.2.19)

......................... 15 January 1998—17h14 ......... ... . ... o ..
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or, writing s = x — ct, we get

| =
s== .
Vep? — 293 —2Cp + 2D

(3.2.20)

We seek solutions which, together with their derivatives vanish at +oo.
Then (3.2.17) and (3.2.19) give C =D =0, so

Je—2p —

s = = i— + K 3.2.21
/ Vep? — 2(,0 ' c—2p ( )
for some constant K that will be determined below.
For C'= D = 0, the Hamiltonian (3.2.18) becomes
/ 1, 2 € 3
h(e,¢') = 5(@)" = 59" +¢ (3.2.22)

and thus the two equilibria given by 0h/d¢ = 0,0h/0¢’ = 0, are (0,0) and
(¢/3,0). The matrix of the linearized Hamiltonian system at these equilibria

is
0 1
[ +c 0 }

which shows that (0,0) is a saddle and (¢/3,0) is spectrally stable. The
second variation criterion on the potential energy (see §1.10) 75502 + 3
at (¢/3,0) shows that this equilibrium is stable. Thus, if (¢(s),¢'(s)) is a
homoclinic orbit emanating and ending at (0,0), the value of the Hamil-
tonian function (3.2.22) on it is H(0,0) = 0. From (3.2.22) it follows that
(¢/2,0) is a point on this homoclinic orbit and thus (3.2.20) for C = D =0
is its expression. Taking the initial condition of this orbit at s = 0 to be
©(0) =¢/2,¢'(0) =0, (3.2.21) forces K = 0 and so

N v

Since ¢ > 0 by hypothesis, the expression in the absolute value is negative
and thus

i\/Es

VEEB - i,
Ve=2p+ /¢ ’
whose solution is
2cetVes c
(1 + et Ves)2 - 2cosh?(y/cs/2)

This produces the soliton solution

p(s) =

u(z,t) = gsech2 [%(x - ct)] ¢
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(d) Sine-Gordon Equation. For functions wu(z,t), where z and ¢ are
real variables, the sine-Gordon equation is uy; = Uy, + sinu. Equation
(3.2.4) shows that it is Hamiltonian with 7 = u; dz, so 7’ = uy,

* /1 1
H(u) = / (51@ + §u§ + cosu) dz, (3.2.23)
and the canonical bracket structure, as in the wave equation. This equation
also has a complete set of integrals; see again Newell [1985]. ¢

(e) Abstract Wave Equation. Let H be a real Hilbert space and B :
‘H — H a linear operator. On H x H, put the symplectic structure € given
by (2.2.6). One can check that:

(i) A= [ _OB é ] is Q2-skew if and only if B is a symmetric operator
on H; and

(i) if B is symmetric, then a Hamiltonian for A is
1
H(z,y) = 5(ly|* + {Bz, z)). (3.2.24)

The equations of motion (2.4.10) give the abstract wave equation:

T+ Bx = 0. ¢

(f) Linear Elastodynamics. On R? consider the equations
Pl = diV(C . Vu),

that is,
i 0 i duk
Pl = 55 [C ]klﬁ} ) (3.2.25)
where p is a positive function, and c¢ is a fourth-order tensor field (the
elasticity tensor) on R?® with the symmetries ¢/ = ki = citkl,
On F(R3;R3) x F(R?*R?) (or more precisely on
H'(R%R?) x L*(R* R?)

with suitable decay properties at infinity), define

Q((u,0), (v,v)) = /R3 p(v-u—u-v)dir. (3.2.26)

......................... 15 January 1998—17h14 ......... ... . ... o ..



112 3.2 Examples: Hamilton’s Equations

The form € is the canonical symplectic form (2.2.3) for fields u and their
conjugate momenta ™ = pu.

On the space of functions u : R® — R3, consider the p-weighted L2-inner
product

(u,v), = / pu-v dz. (3.2.27)
R3

Then the operator Bu = —(1/p) div(c - Vu) is symmetric with respect to
this inner product and thus by Example (e) above, the operator A(u,u) =
(i, (1/p) div(c - Vu)) is Q-skew.

The equations (3.2.25) of linear elastodynamics are checked to be Hamil-
tonian with respect to € given by (3.2.26), and with energy

1 1 [ .
H(u,u) = §/p||1'1||2d3m+ i/c”’“eijekl >z, (3.2.28)

a_ui + aij ’
Oxi  Oxt )’

where

1
eij:§

Exercises
Exercise 3.2-1.  (a) Let ¢ : R"™ — R. Show directly that the sine-
Gordon equation
82
—31;0 —VZp+sing=0

are the Euler-Lagrange equations of a suitable Lagrangian.
(b) Let ¢ : R**! — C. Write the nonlinear Schrédinger equation

L0y
Yot

as a Hamiltonian system.

+ V20 + Byle> =0

Exercise 3.2-2. Find a “soliton” solution for the sine-Gordon equation

0%p 0% .
o2 gz Tome =0

in one-space dimension.
Exercise 3.2-3. Consider the complex nonlinear Schrédinger equation

in one-space dimension

Do | 2 _
ZEerJFﬂSDM =0, B#0.
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(a) Show that the function ¢ : R — C defining the traveling wave so-
lution (z,t) = 1 (x — ct) for ¢ > 0 satisfies a second-order complex
differential equation equivalent to a Hamiltonian system in R* rela-
tive to the non-canonical symplectic form whose matrix is given by

0

(See Exercise 2.4-1).

(b) Analyze the equilibria of the resulting Hamiltonian system in R* and
determine their linear stability properties.

(¢) Let 1(s) = e***/?a(s) for a real function a(s) and determine a second-
order equation for a(s). Show that the resulting equation is Hamilto-
nian and has heteroclinic orbits for 6 < 0. Find them.

(d) Find “soliton” solutions for the complex nonlinear Schréodinger equa-
tion.

3.3 Examples: Poisson Brackets and
Conserved Quantities

(a) The Schrédinger Bracket. In Example (b) of §3.2, we saw that if
H,, is a self-adjoint complex linear operator on a Hilbert space H, then
A = H,p,/ih is Hamiltonian and the corresponding energy function Hx
is the expectation value (H,p) of H,p. Letting H,p, and Kop be two such
operators, and applying the Poisson bracket-commutator correspondence
(2.7.10), or a direct calculation, we get

{<Hop> ) <Kop>} = <[Hovaop]> : (3~3-1)

In other words, the expectation value of the commutator is the Poisson
bracket of the expectation values.

Results like this leads one to statements like: “Commutators in quantum
mechanics are not only analogous to Poisson brackets, they are Poisson
brackets.” Even more striking are true statements like this “Don’t tell me
that quantum mechanics is right and classical mechanics is wrong—after
all quantum mechanics is a special case of classical mechanics.”

Notice that if we take K1 = 1, the identity operator, the corresponding
Hamiltonian function is p(v)) = ||¢||? and from (3.3.1) we see that p is a
conserved quantity for any choice of H,p, a fact that is central to the
probabilistic interpretation of quantum mechanics. Later we shall see that
p is the conserved quantity associated to the phase symmetry i — e'%4).
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114 3.3 Examples: Poisson Brackets and Conserved Quantities

More generally, if F and G are two functions on H with 6F /¢ = VF,
the gradient of F' taken relative to the real inner product Re(,) on H, one
finds that

1
Xp =52 VF (3.3.2)
and
{F,G} = —% Im (VF,VG). (3.3.3)

Notice that (3.3.2), (3.3.3), and Im z = —Re(iz) give

1
dF - Xg = Re(VF, Xg) = - Re (VF, ~iVG)

1
2hRe (iVF,VG)
1
={F.G}

as expected. ¢

(b) KdV Bracket. Using the definition of the bracket (2.7.1), the sym-
plectic structure, and the Hamiltonian vector field formula from Example
(c) of §3.2, one finds that

COF 0 [(6G

for functions F, G of u having functional derivatives that vanish at +c0. ¢

(¢) Linear and Angular Momentum for the Wave Equation.
The wave equation on R? discussed in Example (a) of §3.2 has the Hamil-
tonian

Hem = [ 302+ I0eP +U@)| e (339

Define the linear momentum in the z-direction by

Py(p,m) = /w’g—f . (3.3.6)
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By (3.3.6), 6P, /67 = Op/0x, and 6P, /¢ = (—0n' /0x) d®z, so we get from
(3.2.2)

§P,5H 6H 6P,
H.P - o ot
{H, P} (e, m) /Rs(&r 5o om w)

— 8_@_ 2 ! /8_77/ 3
-/, [63:( Vi +U'(p) + 7' S | da

1 1 .
= /W (% {QWHQ +U(p) + 5(7#)2] dBr =0 (3.3.7)
assuming the fields and U vanish appropriately at co. Thus, P, is conserved.
The conservation of P, is connected with invariance of H under translations
in the z-direction. Deeper insights into this connection are explored later.
Of course, similar conservation laws hold in the y- and z-directions.
Likewise, the angular momenta J = (J,, Jy, J.), where, for example,

0 0
_ ’ . 3
J.(p) = /R3 T (xay yax) pd’x (3.3.8)

are constants of the motion. This is proved in an analogous way. (For precise
function spaces in which these operations can be justified, see Chernoff and
Marsden [1974].) ¢

(d) Linear and Angular Momentum: the Schrédinger Equation.

Linear Momentum. In Example (b) of §3.2, assume that H is the space
of complex-valued L2-functions on R? and that the self-adjoint linear oper-
ator Hyp: H — H commutes with infinitesimal translations of the argument
by a fixed vector £ € R3, that is, Hop(Dt(+) - §) = D(Hoptp(+)) - € for any
¥ whose derivative is in H. One checks, using (3.3.1) that

Pe(w) = (3Dw-6.0) (339)

Poisson commutes with (H,p). If £ is the unit vector along the z-axis, the
corresponding conserved quantity is

P = (3 50.0).

Angular Momentum. Assume that Hop: H — H commutes with in-
finitesimal rotations by a fixed skew-symmetric 3 x 3 matrix @, that is,

Hop (Di(x) - G) = D((Hop) (a)) - b (3.3.10)

for every 1) whose derivative is in H, where, on the left-hand side, Hop, is
thought of as acting on the function  — D1(x) - ©x. Then the angular
momentum function

J(@) : x— (@DY(x) - @o(x)/h,Y(x)) (3.3.11)
......................... 15 January 1998—17h14 ......... ... . ... o ..



116 3.3 Examples: Poisson Brackets and Conserved Quantities

Poisson commutes with H so is a conserved quantity. If we choose w =
(0,0,1); that is,

1

&

I
o = O
o OO

0
0

this corresponds to an infinitesimal rotation around the z-axis. Explicitly,
the angular momentum around the z!-axis is given by

i .0 0
Ji() = <% (xfa—fk —x’“a—fj) ,w>,

where (j, k,1) is a cyclic permutation of (1,2, 3). ¢

(e) Linear and Angular Momentum for Linear Elastodynamics.
Consider again the equations of linear elastodynamics; see Example (f)
of §3.2. Observe that the Hamiltonian is invariant under translations if
the elasticity tensor c is homogeneous (independent of (z,y, z)); the corre-
sponding conserved linear momentum in the z-direction is

du
P, = 1 —d’r. 3.12
/Rgpu 520 * (3.3.12)

Likewise the Hamiltonian is invariant under rotations if c is isotropic; that
is, invariant under rotations, which is equivalent to ¢ having the form

Cijkl _ ’u’((szké‘jl + 61l6jk) + A(Sij(skl,

where p and A are constants (see Marsden and Hughes [1983], §4.3, for the
proof). The conserved angular momentum about the z-axis is

B . ou ou\
J—/Rgpu-(xa—y—y%>dx. ¢

In Chapter 11, we will gain a deeper insight into the significance and
construction of these conserved quantities.

Some Technicalities for Infinite-Dimensional Systems. In general,
unless the symplectic form on the Banach space Z is strong, the Hamil-
tonian vector field Xpg is mot defined on the whole of Z but only on a
dense subspace. For example, in the case of the wave equation 9%¢/0t? =
V2p — U'(¢), a possible choice of phase space is H!(R?) x L?(R3), but
Xy is defined only on the dense subspace H?(R?) x H'(R3). It can also
happen that the Hamiltonian H is not even defined on the whole of Z. For
example, if H,, = V?+V for the Schrodinger equation on L?(R?), then H
could have domain containing H?(R?) which coincides with the domain of
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the Hamiltonian vector field iH,p. If V' is singular, the domain need not be
exactly H?(R3). As a quadratic form, H might be extendable to H!(R3).
See Reed and Simon [1974, Volume II] or Kato [1984] for details.

The problem of existence and even uniqueness of solutions can be quite
delicate. For linear systems one often appeals to Stone’s theorem for the
Schrodinger and wave equations, and to the Hille-Yosida theorem in the
case of more general linear systems. We refer to Marsden and Hughes [1983],
Chapter 6, for the theory and examples. In the case of nonlinear Hamilto-
nian systems, the theorems of Segal [1962], Kato [1975], and Hughes, Kato,
and Marsden [1977] are relevant.

For infinite-dimensional nonlinear Hamiltonian systems technical differ-
entiability conditions on its flow ; are needed to ensure that each ¢, is a
symplectic map; see Chernoff and Marsden [1974], and especially Marsden
and Hughes [1983], Chapter 6. These technicalities are needed in many in-
teresting examples. In the next section, we prove versions of these theorems
with simplified hypotheses. ¢

Exercises

Exercise 3.3-1. Show that {F;, F;} =0, i,j =0, 1,2,3, where the Pois-
son bracket is the KdV bracket and where:

Fo(u) = /OO udz

— 00



