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Introduction and Overview

1.1 Lagrangian and Hamiltonian Formalisms

Mechanics deals with the dynamics of particles, rigid bodies, continuous
media (fluid, plasma, and solid mechanics), and other fields (such as elec-
tromagnetism, gravity, etc.). This theory plays a crucial role in quantum
mechanics, control theory, and other areas of physics, engineering and even
chemistry and biology. Clearly mechanics is a large subject that plays a
fundamental role in science. Mechanics also played a key role in the devel-
opment of mathematics. Starting with the creation of calculus stimulated
by Newton’s mechanics, it continues today with exciting developments in
group representations, geometry, and topology; these mathematical devel-
opments in turn are being applied to interesting problems in physics and
engineering.

Symmetry has always played an important role in mechanics, from fun-
damental formulations of basic principles to concrete applications, such
as stability criteria for rotating structures. The theme of this book is to
emphasize the role of symmetry in various aspects of mechanics.

This introduction treats a collection of topics fairly rapidly. The student
should not expect to understand everything perfectly at this stage. We will
return to many of the topics in subsequent chapters.

Lagrangian and Hamiltonian Mechanics. Mechanics has two main
points of view, Lagrangian mechanics and Hamziltonian mechanics.
In one sense, Lagrangian mechanics is more fundamental since it is based
on variational principles and it is what generalizes most directly to the
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2 1.1 Lagrangian and Hamiltonian Formalisms

general relativistic context. In another sense, Hamiltonian mechanics is
more fundamental, since it is based directly on the energy concept and it is
what is more closely tied to quantum mechanics. Fortunately, in many cases
these branches are equivalent as we shall see in detail in Chapter 7. Needless
to say, the merger of quantum mechanics and general relativity remains
one of the main outstanding problems of mechanics. In fact, the methods
of mechanics and symmetry are important ingredients in the developments
of string theory that has attempted this merger.

Lagrangian Mechanics. The Lagrangian formulation of mechanics is
based on the observation that there are variational principles behind the
fundamental laws of force balance as given by Newton’s law F = ma.
One chooses a configuration space ) with coordinates ¢*,i = 1,...,n,
that describe the configuration of the system under study. Then one
introduces the Lagrangian L(q',{%,t), which is shorthand notation for
Lg%, ... ,q" ¢, ..., 4" t). Usually, L is the kinetic minus the potential
energy of the system and one takes ¢* = dq’/dt to be the system velocity.
The wvariational principle of Hamilton states

b
5/ L(q",4",t)dt = 0. (1.1.1)

In this principle, we choose curves ¢*(t) joining two fixed points in @ over
a fixed time interval [a, b], and calculate the integral regarded as a function
of this curve. Hamilton’s principle states that this function has a critical
point at a solution of the space of curves. If we let ¢° be a variation of the
derivative of a family of curves with respect to a parameter, then by the
chain rule, (1.1.1) is equivalent to

n b

oL , OL .,

S YL 1.1.2
Zl/a (Wqu@dzq) ! (1:2)

for all variations éq°.
Using equality of mixed partials, one finds that

d .
8¢ = ~6q".
q dtq

Integrating the second term of (1.1.2) by parts, and using the boundary
conditions §¢* = 0 at t = @ and b, (1.1.2) becomes

n b
0L d (0L Do
;/a [&ﬂ' dt (aqiﬂ dq" dt = 0. (1.1.3)

Since 6q® is arbitrary (apart from being zero at the endpoints), (1.1.2) is
equivalent to the Fuler—Lagrange equations

dor oL _
dto¢t  Oqi
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1.1 Lagrangian and Hamiltonian Formalisms 3

(This topic will be discussed at greater length in §7.3 and §8.1). For the
case of kinetic minus potential energy for a system of particles in Euclidean
space, where L has the form

i i BN %) i
Lq' ¢ 1) = 5 > milld'I* = V(a), (1.1.5)
=1

(1.1.4) reduces to Newton’s second law

d ; ov

—(mig') = s (1.1.6)

dt

which is F = ma for the motion of a particle in the potential field V.
Generally, in Lagrangian mechanics, one identifies a configuration space

Q (with coordinates ¢!, ..., ¢")) and then forms the velocity phase space

TQ also called the tangent bundle of (). Coordinates on T'Q) are denoted

(q17"'7qn7ql7"' 7q.n)7

and the Lagrangian is regarded as a function L : TQ — R.

Already at this stage, interesting links with geometry emerge. If g;;(q)
is a given metric tensor or mass matriz (for now, just think of this as a
g-dependent positive-definite symmetric n x n matrix) and we consider the
kinetic energy Lagrangian

L(q',q") = 3 Z 9i5(q)d*d’, (1.1.7)

ij=1

then the Euler—Lagrange equations are equivalent to the equations of geodesic
motion, as can be directly verified (see §7.5 for details). Conservation laws
that are a result of symmetry in a mechanical context can then be applied
to yield interesting geometric facts. For instance, theorems about geodesics
on surfaces of revolution can be readily proved this way.

The Lagrangian formalism can be extended to the infinite dimensional
case. One view (but not the only one) is to replace the q¢* by fields o', ..., @™
which are, for example, functions of spatial points z* and time. Then L
is a function of p!,... @™, ¥, ..., ¢™ and the spatial derivatives of the
fields. We shall deal with various examples of this later, but we emphasize
that properly interpreted, the variational principle and the Euler-Lagrange
equations remain intact. One replaces the partial derivatives in the Euler—
Lagrange equations by functional derivatives defined below.

Hamiltonian Mechanics. To pass to the Hamiltonian formalism, in-
troduce the conjugate momenta
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4 1.1 Lagrangian and Hamiltonian Formalisms

make the change of variables (¢*, ¢*) — (¢*, p;), and introduce the Hamil-
tonian

H(q',pi,1) Zp]q — L(¢", ', t). (1.1.9)

Remembering the change of variables, we make these computations using
the chain rule:

n

j I 9 ,
+Z( or _ 9 aq> g (1.1.10)

TOp; 947 Ip;
and
0H <& 8(]3 L aqﬂ oL
= ——= 1.1.11
aqz Z ] Z aqj 8q aqz’ ( )

where (1.1.8) has been used twice. Using (1.1.4) and (1.1.8), we see that
(1.1.11) is equivalent to

3H d
dgt ot

~pi. (1.1.12)

Thus, the Fuler—Lagrange equations are equivalent to Hamilton’s equa-
tions

dq’ _OH
dt N 8p¢7
1.1.13
dt — 0q'’
where i = 1,... ,n. The analogous Hamiltonian partial differential equa-
tions for time dependent fields ¢!, ..., ™ and their conjugate momenta
Ty eees T, A€
Op®  OH
ot om
2 1.1.14
or,  6H ( )
o b’
where a = 1,... ,m, and H is a functional of the fields ¢® and 7., and the

variational or functional derivatives are defined by the equation

6H 1
—&p d":c—hm [H((p +ebpt, 0% O Ty T

Rn 5§0
_H(QO ?30 PRI 7§0m7ﬂ-1)"' 77Tm)]5 (1115>
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1.1 Lagrangian and Hamiltonian Formalisms 5

and similarly for §H /62, ... ;6 H/67,,. Equations (1.1.13) and (1.1.14) can
be recast in Poisson bracket form

F={F H}, (1.1.16)

where the brackets in the respective cases are given by

" (OF 0G  OF 9G
6= (5~ o) L
and
i §F 6G  6F 6G\ ,
{F,G} = ;/Rn <5<p“ e e 6@“) d"z. (1.1.18)

Associated to any configuration space @ (coordinatized by (¢',...,q"))
is a phase space T*(Q called the cotangent bundle of ), which has coordi-
nates (¢%,...,q", p1,-..,pn). On this space, the canonical bracket (1.1.17)
is intrinsically defined in the sense that the value of {F,G} is indepen-
dent of the choice of coordinates. Because the Poisson bracket satisfies
{F,G} = —{G, F} and in particular {H,H} = 0 , we see from (1.1.16)
that H = 0; that is, energy is conserved. This is the most elementary
of many deep and beautiful conservation properties of mechanical sys-
tems.

There is also a variational principle on the Hamiltonian side. For the
Euler-Lagrange equations, we deal with curves in ¢-space, whereas for
Hamilton’s equations we deal with curves in (g, p)-space. The principle
is

b n
5/ > pid' — H(q’,p;)]dt =0 (1.1.19)
a =1

as is readily verified; one requires p;6¢* = 0 at the endpoints.

This formalism is the basis for the analysis of many important systems
in particle dynamics and field theory, as described in standard texts such
as Whittaker [1927], Goldstein [1980], Arnold [1989], Thirring [1978], and
Abraham and Marsden [1978]. The underlying geometric structures that are
important for this formalism are those of symplectic and Poisson geometry.
How these structures are related to the Euler-Lagrange equations and vari-
ational principles via the Legendre transformation is an essential ingredient
of the story. Furthermore, in the infinite-dimensional case it is fairly well
understood how to deal rigorously with many of the functional analytic
difficulties that arise; see, for example, Chernoff and Marsden [1974] and
Marsden and Hughes [1983].
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6 1.2 The Rigid Body

Exercises

Exercise 1.1-1. Show by direct calculation that the classical Poisson
bracket satisfies the Jacobi identity. That is, if F' and K are both func-
tions of the 2n variables (¢',q>,... ,q", p1, P2, ..., pn) and we define

" (OF 0K 0K OF
K =3 (55~ 3 )

then the identity {L,{F,K}} + {K,{L,F}} + {F,{K,L}} = 0 holds.

1.2 The Rigid Body

It was already clear in the last century that certain mechanical systems
resist the canonical formalism outlined in §1.1. For example, to obtain a
Hamiltonian description for fluids, Clebsch [1857, 1859] found it necessary
to introduce certain nonphysical potentials’. We will discuss fluids in §1.4
below.

Euler’s Rigid Body Equations. An analogous situation is exhibited
by the Euler equations of rigid body dynamics. In the absence of external
forces, the equations are usually written as follows, as we shall derive in
detail in Chapter 15:

L = (I — 13)Q293,
Qs = (I5 — 1), (1.2.1)
Qs = (I — 1) s,

where Q = (21,Q2,Q3) is the body angular velocity vector and Iy, Is, I3
are the moments of inertia of the rigid body. Are equations (1.2.1) La-
grangian or Hamiltonian in any sense? Since there are an odd number of
equations, they cannot be put in canonical Hamiltonian form in the sense
of equations (1.1.13).

One possible answer is that to see the Lagrangian (or Hamiltonian) struc-
ture of the rigid body equations, one can use a classical description of the
orientation of the body in terms of Euler angles 6, ¢, and their velocities
0, o, w (or conjugate momenta py, p,, py), relative to which the equations
are in Euler-Lagrange (or canonical Hamiltonian) form. However, this pro-
cedure requires using siz equations while many questions are easier to study
using the three equations (1.2.1).

IFor a geometric account of Clebsch potentials and further references, see Marsden
and Weinstein [1983], Marsden, Ratiu, and Weinstein [1984a,b], Cendra and Marsden
[1987], and Cendra, Ibort, and Marsden [1987].
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1.2 The Rigid Body 7

Lagrangian Form. To see the sense in which (1.2.1) are Lagrangian,
introduce the Lagrangian

1
L(Q) = S (197 + LOS + [,93) (1.2.2)

which, as we will see in detail in Chapter 15, is the (rotational) kinetic
energy of the rigid body. Regarding IQ) = (114, I2€9, I323) as a vector,
write (1.2.1) as

d oL 0L

aitoa 90"
These equations appear explicitly in Lagrange [1788] (Volume 2, p.212)
and were generalized to arbitrary Lie algebras by Poincaré [1901b]. We will
discuss these general Fuler-Poincaré equations in Chapter 13. We can
also write a variational principle for (1.2.3) that is analogous to that for the
Euler-Lagrange equations, but is written directly in terms of 2. Namely,
(1.2.3) is equivalent to

Q. (1.2.3)

b
5/ Ldt =0, (1.2.4)

where variations of ) are restricted to be of the form
=240 x%, (1.2.5)

where ¥ is a curve in R3® that vanishes at the endpoints. This may be
proved in the same way as we proved that the variational principle (1.1.1)
is equivalent to the Euler-Lagrange equations (1.1.4); see Exercise 1.2-2.
In fact, later on in Chapter 13, we shall see how to derive this variational
principle from the more “primitive” one (1.1.1).

Hamiltonian Form. If, instead of variational principles, we concentrate
on Poisson brackets and drop the requirement that they be in the canon-
ical form (1.1.17), then there is also a simple and beautiful Hamiltonian
structure for the rigid body equations. To state it, introduce the angular
momenta

oL
I, =L =—, i=1,2,3, 1.2.
29, ) 3 (1.2.6)
so that the Euler equations become
: I, — I3
I, = II,1I
1 .[2.[3 2113,
: I3 -1
I, = 11511 1.2.7
2 1311 3111, ( )
. L — I
I3 = IT, 11
3 1112 1112,



8 1.2 The Rigid Body

that is,
I1=1I x Q. (1.2.8)

Introduce the following rigid body Poisson bracket on functions of the
IT’s:

{F,G}HII) = -II- (VF x VG) (1.2.9)
and the Hamiltonian
1 /102 112 112
H=>-(=t4+2423). 1.2.1
2<Il+12+13> ( 0)

One checks (Exercise 1.2-3) that Euler’s equations (1.2.7) are equivalent
to?

F={F H}. (1.2.11)

For any equation of the form (1.2.11), conservation of total angular mo-
mentum holds regardless of the Hamiltonian; indeed, with

1
C(T) = (I3 + 113 + 113,

we have VC(IT) = IT, and so

| &
N =

(I + TI5 + T13)

{C, H}(II)

— —II- (VC x VH)
= —II-(II x VH) = 0.

U

t

The same calculation shows that {C, F'} = Ofor any F. Functions such
as these that Poisson commute with every function are called Casimir
functions; they play an important role in the study of stability, as we
shall see later3.

2This simple result is implicit in many works, such as Arnold [1966, 1969], and is
given explicitly in this form for the rigid body in Sudarshan and Mukunda [1974]. (Some
preliminary versions were given by Pauli [1953], Martin [1959], and Nambu [1973].) On
the other hand, the variational form (1.2.4) appears to be due to Poincaré [1901b] and
Hamel [1904], at least implicitly. It is given explicitly for fluids in Newcomb [1962] and
Bretherton [1970] and in the general case in Marsden and Scheurle [1993a,b].

3H. B. G. Casimir was a student of P. Ehrenfest and wrote a brilliant thesis on
the quantum mechanics of the rigid body, a problem that has not been adequately
addressed, even today. Ehrenfest in turn wrote his thesis under Boltzmann around 1900
on variational principles in fluid dynamics and was one of the first to study fluids from
this point of view in material, rather than Clebsch representation. Curiously, Ehrenfest
used the Gauss—Hertz principle of least curvature rather than the more elementary
Hamilton prinicple. This is a seed for many important ideas in this book.
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1.3 Lie-Poisson Brackets, Poisson Manifolds, Momentum Maps 9

Exercises

Exercise 1.2-1. Show by direct calculation that the rigid body Poisson
bracket satisfies the Jacobi identity. That is, if F' and K are both functions
of (IIy,1I5,1I3) and we define

{F,K}(II) = —-1II- (VF x VK),
then the identity {L,{F,K}} + {K,{L,F}} + {F,{K,L}} = 0 holds.
Exercise 1.2-2. Verify directly that the Euler equations for a rigid body

are equivalent to
1 / Ldt=0

for variations of the form §Q = X+Qx ¥, where ¥ vanishes at the endpoints.

Exercise 1.2-3. Verify directly that the Euler equations for a rigid body
are equivalent to the equations

d
—F={FH
dt {71},

where {, } is the rigid body Poisson bracket and H is the rigid body Hamil-
tonian.

Exercise 1.2-4.

(a) Show that the rotation group SO(3) can be identified with the Poincaré
sphere: that is, the unit circle bundle of the two sphere S2, defined
to be the set of unit tangent vectors to the two-sphere in R3.

(b) Using the known fact that any (continuous) vector field on S? must
vanish somewhere, show that SO(3) cannot be written as S? x S1.

1.3 Lie—Poisson Brackets,
Poisson Manifolds, Momentum Maps

The rigid body variational principle and the rigid body Poisson bracket
are special cases of general constructions associated to any Lie algebra g,
that is, a vector space together with a bilinear, antisymmetric bracket [£, 7]
satisfying Jacobi’s identity:

(& ], ¢] + 1S, €] n] + [[n, €], €] = 0 (1.3.1)

for all £,m,( € g. For example, the Lie algebra associated to the rotation
group is g = R3 with bracket [¢,7] = & x 1, the ordinary vector cross
product.

......................... 6 January 1998—15h01 ....... .. ... .. ...,



10 1.3 Lie-Poisson Brackets, Poisson Manifolds, Momentum Maps

The Euler-Poincaré Equations. The construction of a variational prin-
ciple on g, as we shall see in Chapter 13, replaces 62 = Y+OxT by
866 =0+ [n,£]. The resulting general equations on g, which we will study
in detail in Chapter 13, are called the Fuler-Poincaré equations. These
equations are valid for either finite or infinite dimensional Lie algebras. To
state them in the finite dimensional case we use the following notation.
Choosing a basis e, ... ,e. of g (so dim g = r), the structure constants
C4, are defined by the equation

[€q, €] ZC v€ds (1.3.2)

where a,b run from 1 to r. If £ is an element of the Lie algebra, its compo-
nents relative to this basis are denoted £2. If e!, ... , " is the corresponding
dual basis, then the components of the differential of the Lagrangian L are
the partial derivatives L/9¢®. Then the Euler-Poincaré equations are

d 0L ., OL
56l = Z Oadagb (1.3.3)

The coordinate-free version reads

d OL . OL

Bl L

ddt O¢ T
where ade : g — g is the linear map n — [£,7n] and adZ gt — gF s its
dual. For example, for L : R? — R, the Euler-Poincaré equations become

d oL OL

——— = — X Q,

dt o2 09
which generalize the Euler equations for rigid body motion. As we men-
tioned earlier, these equations were written down for a fairly general class

of L by Lagrange [1788, Volume 2, Equation A on p. 212], while it was
Poincaré [1901b] who generalized them to any Lie algebra.

The Lie—Poisson Equations. We can also generalize the rigid body
Poisson bracket as follows: Let F, G be defined on the dual space g*. De-
noting elements of g* by u, let the functional derivative of F at p be
the unique element 6 F/éu of g defined by

tan L+ 20— P = <6u, §i> (1.3.4)

for all ép € g*, where (,) denotes the pairing between g* and g. This
definition (1.3.4) is consistent with the definition of 6 F/§¢p given in (1.1.15)

......................... 6 January 1998—15h01 ....... .. ... .. ...,



1.3 Lie-Poisson Brackets, Poisson Manifolds, Momentum Maps 11

when g and g* are chosen to be appropriate spaces of fields. Define the (+)
Lie—Poisson brackets by

(F,Gha(p) = + <u7 [‘z—i %] > - (1.3.5)

Using the coordinate notation introduced above, the () Lie—Poisson brack-
ets become

oF 0G
F.G =+ d 1.3.6
{ }Zt . g . b dau/ aub ( )

where p = p,e® )
The Lie—Poisson equations, determined by F' = {F, H} read

0OH
b
Ha =+ Z Caca He,
b,c=1
or intrinsically,
= Fadsp s, p- (1.3.7)

Poisson Manifolds. The Lie-Poisson bracket and the canonical brackets
from the last section have four simple but crucial properties:

PB1 {F,G} is areal bilinear in F and G.

PB2 {F,G}=—{G,F}, antisymmetry.
PB3 {{F,G},H}+{{H,F},G} +{{G,H},F} =0, Jacobi identity.
PB4 {FG,H} = F{G, H} +{F H)G, Leibniz identity.

A manifold (that is, an n-dimensional “smooth surface”) P together
with a bracket operation on C°°(P), the space of smooth functions on
P, and satisfying properties PB1-PB4, is called a Poisson manifold.
In particular, g* is a Poisson manifold. In Chapter 10 we will study the
general concept of a Poisson manifold.

For example, if we choose g = R? with the bracket taken to be the cross
product [z,y] = z X y, and identify g* with g using the dot product on R?
(so (II,x) = II - x is the usual dot product), then the (—) Lie—Poisson
bracket becomes the rigid body bracket.

Hamiltonian Vector Fields. On a Poisson manifold (P, {-,-}), asso-
ciated to any function H there is a vector field, denoted by Xy, which
has the property that for any smooth function F' : P — R we have the
identity (dF, Xg) = dF - Xg = {F, H}. We say that the vector field Xg
is generated by the function H or that Xy is the Hamiltonian vector
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12 1.3 Lie-Poisson Brackets, Poisson Manifolds, Momentum Maps

field associated with H. We also define the associated dynamical system
whose points z in phase space evolve in time by the differential equation

L= Xp(2). (1.3.8)

This definition is consistent with the equations in Poisson bracket form
(1.1.16). The function H may have the interpretation of the energy of the
system, but of course the definition (1.3.8) makes sense for any function.
For canonical systems with the Poisson bracket given by (1.1.17), Xg is
given by the formula

; OH OH
Xgl@',p)=|—,— 1.3.9
H(q ap’L) <apz7 aql> ’ ( )
whereas for the rigid body bracket given on R? by (1.2.9),
Xp(II) =11 x VH(II). (1.3.10)

Reduction. There is an important feature of the rigid body bracket that
also carries over to more general Lie algebras, namely, Lie—Poisson brackets
arise from canonical brackets on the cotangent bundle (phase space) T*G
associated with a Lie group G which has g as its associated Lie algebra.
(The general theory of Lie groups is presented in Chapter 9.) That is, there
is a general construction underlying the association

(0,0,%, 10, g, Py) — (111, 2, IT3) (1.3.11)
defined by:
1 ) )
I, = S0 [(py — py cos 0) sin ) + pg sin 6 cos Y],
Iy = ~1 (P — Dy cOs ) cos1h — pg sin @ sin )], (1.3.12)
sin 6
I3 = Dy

This rigid body map takes the canonical bracket in the variables (6, ¢, 1)
and their conjugate momenta (pg, p,, py) to the (—) Lie-Poisson bracket in
the following sense. If f F' and K are functions of I1y, IT5, I3, they determine
functions of (8, y, %, pg, Py, py) by substituting (1.3.12). Then a (tedious
but straightforward) exercise using the chain rule shows that

{Fa K}(—){Lie—Poisson} = {FyK}canonicaL (1313)

We say that the map defined by (1.3.12) is a canonical map or a
Poisson map and that the (—) Lie-Poisson bracket has been obtained
from the canonical bracket by reduction.

For a rigid body free to rotate about is center of mass, G is the (proper)
rotation group SO(3) and the Euler angles and their conjugate momenta

......................... 6 January 1998—15h01 ....... .. ... .. ...,



1.3 Lie-Poisson Brackets, Poisson Manifolds, Momentum Maps 13

are coordinates for 7*G. The choice of T*G as the primitive phase space is
made according to the classical procedures of mechanics: the configuration
space SO(3) is chosen since each element A € SO(3) describes the orien-
tation of the rigid body relative to a reference configuration, that is, the
rotation A maps the reference configuration to the current configuration.
For the description using Lagrangian mechanics, one forms the velocity-
phase space T'SO(3) with coordinates (9,(,0,1/1,9,gb,¢). The Hamiltonian
description is obtained as in §1.1 by using the Legendre transform which
maps TG to T*G.

The passage from T*G to the space of IT’s (body angular momentum
space) given by (1.3.12) turns out to be determined by left translation on
the group. This mapping is an example of a momentum map; that is, a
mapping whose components are the “Noether quantities” associated with
a symmetry group. The map (1.3.12) being a Poisson (canonical) map
(see equation (1.3.13)) is a general fact about momentum maps proved in
§12.6. To get to space coordinates one would use right translations and the
(+) bracket. This is what is done to get the standard description of fluid
dynamics.

Momentum Maps and Coadjoint Orbits. From (1.3.10); that is, IT =
II x VH, we see that

d
—|ItT)]?2 = 0.
dtll |

In other words, Lie-Poisson systems on R3 conserve the total angular mo-
menta; that is, leave the spheres in II-space invariant. The generalization
of these objects are called coadjoint orbits.

Coadjoint orbits are submanifolds of g*, with the property that any Lie—
Poisson system F = {F, H} leaves them invariant. We shall also see how
these spaces are Poisson manifolds in their own right and are related to the
right (+) or left (—) invariance of the system regarded on T*G, and the
corresponding conserved Noether quantities (momentum maps again).

On a general Poisson manifold (P, {-,-}), the definition of a momentum
map is as follows. We assume that a Lie group G with Lie algebra g acts on
P by canonical transformations. As we shall review later (see Chapter 9),
the infinitesimal way of specifying the action is to associate to each Lie
algebra element ¢ € g a vector field £p on P. A momentum map is a
map J : P — g* with the property that for every £ € g, the function (J,¢)
(the pairing of the g* valued function J with the vector £) generates the
vector field £p; that is,

Xa6) =&

As we shall see later, this definition generalizes the usual notions of linear
and angular momentum. The rigid body shows that the notion has much
wider interest. A fundamental fact about momentum maps is that if the
Hamiltonian H is invariant under the action of the group G, then the
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14 1.3 Lie-Poisson Brackets, Poisson Manifolds, Momentum Maps

vector valued function J is a constant of the motion for the dynamics of
the Hamiltonian vector field X g associated to H.

One of the important notions related to momentum maps is that of
infinitestmal equivariance or the classical commutation relations,
which state that

{(3,6,Jm} = (J,[570) (1.3.14)

for any Lie algebra elements & and 7. Relations like this are well known
for the angular momentum, and can be directly checked using the Lie al-
gebra of the rotation group. Later, in Chapter 12 we shall see that the
relations (1.3.14) hold for a large important class of momentum maps that
are given by computable formulas. Remarkably, it is the condition (1.3.14)
that is exactly what is needed to prove that J is, in fact, a Poisson map.
It is via this route that one gets an intellectually satisfying generalization
of the fact that the map defined by equations (1.3.12) is a Poisson map,
that is, equation (1.3.13) holds.

Some History. The Lie-Poisson bracket was discovered by Sophus Lie
(Lie [1890], Vol. I1, p. 237). However, Lie’s bracket and his related work was
not given much attention until the work of Kirillov, Kostant, and Souriau
(and others) revived it in the mid-1960s. Meanwhile, it was noticed by Pauli
and Martin around 1950 that the rigid body equations are in Hamiltonian
form using the rigid body bracket, but they were apparently unaware of the
underlying Lie theory. Meanwhile, the generalization of the Euler equations
to any Lie algebra g by Poincaré [1901b] (and picked up by Hamel [1904])
proceeded as well, but without much contact with Lie’s work until recently.
The symplectic structure on coadjoint orbits also has a complicated history
and itself goes back to Lie (Lie [1890], Ch. 20).

The general notion of a Poisson manifold also goes back to Lie, The four
defining properties of the Poisson bracket have been isolated by many au-
thors such as Dirac [1964], p. 10. The term “Poisson manifold” was coined
by Lichnerowicz [1977]. We shall give more historical information on Pois-
son manifolds in §10.3.

The notion of the momentum map (the English translation of the French
words “application moment”) also has roots going back to the work of Lie.*

Momentum maps have found an astounding array of applications be-
yond those already mentioned. For instance, they are used in the study of
the space of all solutions of a relativistic field theory (see Arms, Marsden
and Moncrief [1982]) and in the study of singularities in algebraic geom-
etry (see Atiyah [1983] and Kirwan [1984a]). They also enter into convex

4Many authors use the words “moment map” for what we call the “momentum map.”
In English one does not use the phrases “linear moment” or “angular moment of a
particle”, and correspondingly we prefer to use “momentum map.” We shall give some
comments on the history of momentum maps in §11.2.
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1.4 The Heavy Top 15

analysis in many interesting ways, such as the Schur-Horn theorem (Schur
[1923], Horn [1954]) and its generalizations (Kostant [1973]) and in the
theory of integrable systems (Bloch, Brockett, and Ratiu [1990, 1992] and
Bloch, Flaschka, and Ratiu [1990, 1993]). It turns out that the image of
the momentum map has remarkable convexity properties: see Atiyah [1982],
Guillemin and Sternberg [1982, 1984], Kirwan [1984b], Delzant [1988], Lu
and Ratiu [1991], Sjamaar [1996], and Flaschka and Ratiu [1997].

Exercises

Exercise 1.3-1. A linear operator D on the space of smooth functions
on R" is called a derivation if it satisfies the Leibniz identity: D(FG) =
(DF)G + F(DG). Accept the fact from the theory of manifolds (see Chap-
ter 4) that in local coordinates the expression of DF takes the form

(DF)() = 3 a' () G (0)

for some smooth functions a', ... ,a™.

(a) Use the fact above to prove that for any Poisson bracket {,} on R™,
we have

. S OF 0G
_ i i
{F,G} = E {2,z }axiamj'

i,j=1

(b) Show that the Jacobi identity holds for a Poisson bracket {, } on R"
if and only if it holds for the coordinate functions.

Exercise 1.3-2.  (a) Define, for a fixed function f : R3 — R
{F,K}; =Vf-(VF xVK).
Show that this is a Poisson bracket.

(b) What does the bracket in part (a) have to do with Nambu [1973]?
Exercise 1.3-3. Verify directly that (1.3.12) defines a Poisson map.

Exercise 1.3-4. Show that a bracket satisfying the Leibniz identity also
satisfles F{K,L} — {FK,L} ={F,K}L — {F,KL}.

1.4 The Heavy Top

The equations of motion for a rigid body with a fixed point in a grav-
itational field provide another interesting example of a system which is
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16 1.4 The Heavy Top

Hamiltonian relative to a Lie—Poisson bracket. The underlying Lie algebra
consists of the algebra of infinitesimal Euclidean motions in R3. (These
do not arise as Euclidean motions of the body since the body has a fixed
point). As we shall see, there is a close parallel with the Poisson structure
for compressible fluids.

The basic phase space we start with is again 7% SO(3) , coordinatized by
Euler angles and their conjugate momenta. In these variables, the equations
are in canonical Hamiltonian form; however, the presence of gravity breaks
the symmetry and the system is no longer SO(3) invariant, so it cannot be
written entirely in terms of the body angular momentum IT. One also needs
to keep track of T', the “direction of gravity” as seen from the body (T’ =
A1k, where k points upward and A is the element of SO(3) describing
the current configuration of the body). The equations of motion are

. I, — I

M = 2——TI,1T; + Mgl(T*x* - T%)?),
115

. I3 —1T

I, = > LII,T0 + Mgl(T3 ! — Ty ?), (1.4.1)
131,

T L -1 1.2 2.1

II3 = Iy + Mgl(T*x* —Tx7)
LI

and

I=TxQ (1.4.2)

where M is the body’s mass, g is the acceleration of gravity, x is the unit
vector on the line connecting the fixed point with the body’s center of mass,
and [ is the length of this segment.

The Lie algebra of the Euclidean group is se(3) = R® x R? with the Lie
bracket

[(&),(n, V)] =(§xn,€ExV—nxu). (1.4.3)

We identify the dual space with pairs (II, T'); the corresponding (—) Lie—
Poisson bracket called the heavy top bracket is

{F,G}(H,I‘) =-II- (VHF X VHG)
-I- (VHF X VFG - VHG X VFF) (144)
The above equations for IL, T can be checked to be equivalent to
F={F H}, (1.4.5)

where the heavy top Hamiltonian

H(ILT) = -

m 12 I
2<1+—3%i)+Mwﬂx (1.4.6)

n LI
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1.5 Incompressible Fluids 17

is the total energy of the body (Sudarshan and Mukunda [1974]).

The Lie algebra of the Euclidean group has a structure which is a special
case of what is called a semidirect product. Here it is the product of the
group of rotations with the translation group. It turns out that semidirect
products occur under rather general circumstances when the symmetry in
T*G is broken. In particular, notice the similarities in structure between
the Poisson bracket (1.6.16) for compressible flow and (1.4.4). For com-
pressible flow it is the density which prevents a full Diff () invariance;
the Hamiltonian is only invariant under those diffeomorphisms that pre-
serve the density. The general theory for semidirect products was developed
by Sudarshan and Mukunda [1974], Ratiu [1980, 1981, 1982], Guillemin
and Sternberg [1982], Marsden, Weinstein, Ratiu, Schmid, and Spencer
[1983], Marsden, Ratiu, and Weinstein [1984a,b], and Holm and Kupersh-
midt [1983]. The Lagrangian approach to this and related problems is given
in Holm, Marsden, and Ratiu [1997].

Exercises

Exercise 1.4-1. Verify that I' = {F, H} are equivalent to the heavy top
equations using the heavy top Hamiltonian and bracket.

Exercise 1.4-2. Work out the Euler-Poincaré equations on se(3). Show
that with L(Q,T) = (1,03 + Q3 + [303) — MgIT - x, the Euler—Poincaré
equations are not the heavy top equations.

1.5 Incompressible Fluids

Arnold [1966a, 1969] showed that the Euler equations for an incompressible
fluid could be given a Lagrangian and Hamiltonian description similar to
that for the rigid body. His approach® has the appealing feature that one
sets things up just the way Lagrange and Hamilton would have done: one
begins with a configuration space @, forms a Lagrangian L on the velocity
phase space T'Q) and then H on the momentum phase space T*Q, just as
was outlined in §1.1. Thus, one automatically has variational principles,
etc. For ideal fluids, @ = G is the group Diffy(2) of volume preserving
transformations of the fluid container (a region 2 in R? or R3, or a Rieman-
nian manifold in general, possibly with boundary). Group multiplication
in G is composition.

Kinematics of a Fluid. The reason we select G = Diff,1(2) as the
configuration space is similar to that for the rigid body; namely, each ¢

5 Arnold’s approach is consistent with what appears in the thesis of Ehrenfest from
around 1904; see Klein [1970]. However, Ehrenfest bases his principles on the more
sophisticated curvature principles of Gauss and Hertz.
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18 1.5 Incompressible Fluids

in G is a mapping of Q to Q which takes a reference point X € Q to a
current point x = ¢(X) € Q; thus, knowing ¢ tells us where each particle
of fluid goes and hence gives us the fluid configuration. We ask that ¢
be a diffeomorphism to exclude discontinuities, cavitation, and fluid inter-
penetration, and we ask that ¢ be volume preserving to correspond to the
assumption of incompressibility.

A motion of a fluid is a family of time-dependent elements of G, which
we write as ¢ = ¢(X,t). The material velocity field is defined by

Op(X,t)
V(X,t) = T

and the spatial velocity field is defined by v(z,t) = V(X,t), where z and
X are related by x = ¢(X,t). If we suppress “t” and write ¢ for V, note
that

v=g¢op !t ie, vi=Viop (1.5.1)
where ¢i(x) = p(X,t). We can regard (1.5.1) as a map from the space
of (¢, ) (material or Lagrangian description) to the space of v’s (spatial
or Eulerian description). Like the rigid body, the material to spatial map
(1.5.1) takes the canonical bracket to a Lie-Poisson bracket; one of our
goals is to understand this reduction. Notice that if we replace ¢ by won
for a fixed (time-independent) n € Diffy01(£2), then ¢ o p~! is independent
of n; this reflects the right invariance of the Eulerian description (v is
invariant under composition of ¢ by n on the right). This is also called
the particle relabeling symmetry of fluid dynamics. The spaces TG
and T*@G represent the Lagrangian (material) description and we pass to
the Eulerian (spatial) description by right translations and use the (+)
Lie—Poisson bracket. One of the things we want to do later is to better
understand the reason for the switch between right and left in going from
the rigid body to fluids.

Dynamics of a Fluid. The Fuler equations for an ideal, incompress-
ible, homogeneous fluid moving in the region ) are

ov
N v V= —Vp (15.2)
ot
with the constraint div v = 0 and boundary conditions: v is tangent to
o09.

The pressure p is determined implicitly by the divergence-free (volume
preserving) constraint div v = 0. (See Chorin and Marsden [1993] for basic
information on the derivation of Euler’s equations.) The associated Lie al-
gebra g is the space of all divergence-free vector fields tangent to the bound-
ary. This Lie algebra is endowed with the negative Jacobi—Lie bracket of
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1.5 Incompressible Fluids 19

vector fields given by
. < vt ow!
v, w]f, = <uﬂ% — ) 6a:ﬁ) . (1.5.3)

(The sub L on [, ] refers to the fact that it is the left Lie algebra bracket
on g. The most common convention for the Jacobi-Lie bracket of vector
fields, also the one we adopt, has the opposite sign.) We identify g and g*
using the pairing

(v,w) = /Qv~wd3m. (1.5.4)

Hamiltonian Structure. Introduce the (4) Lie-Poisson bracket, called
the ideal fluid bracket, on functions of v by

B OF 0G| 4
{F,G}(V) = \/QV' |:6_V,(5_V:|Ld Z, (155)
where 6 F/6v is defined by
.1 6F\ 5
Ehg(l) g[F(V +ebv) — F(v)] = /Q <6v . E) d’z. (1.5.6)

With the energy function chosen to be the kinetic energy,

H(v) = %/an\\?df"x, (1.5.7)

one can verify that the Euler equations (1.5.2) are equivalent to the Poisson
bracket equations

F={F H} (1.5.8)

for all functions F' on g. For this, one uses the orthogonal decomposition
w = Pw + Vp of a vector field w into a divergence-free part Pw in g and
a gradient. The Euler equations can be written
ov +P(v-Vv)=0. (1.5.9)
ot
One can express the Hamiltonian structure in terms of the vorticity as a
basic dynamic variable, and show that the preservation of coadjoint orbits
amounts to Kelvin’s circulation theorem. Marsden and Weinstein [1983]
show that the Hamiltonian structure in terms of Clebsch potentials fits
naturally into this Lie—Poisson scheme, and that Kirchhoff’s Hamiltonian
description of point vortex dynamics, vortex filaments, and vortex patches
can be derived in a natural way from the Hamiltonian structure described
above.
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20 1.5 Incompressible Fluids

Lagrangian Structure. The general framework of the Euler-Poincaré
and the Lie-Poisson equations gives other insights as well. For example,
this general theory shows that the Euler equations are derivable from the

“variational principle”
b
5/ / Livizddz =0
a JQ 2

which is to hold for all variations év of the form
ov =10+ [u,u]L

(sometimes called Lin constraints) where u is a vector field (represent-
ing the infinitesimal particle displacement) vanishing at the temporal end-
points®.

There are important functional analytic differences between working in
material representation (that is, on 7*G) and in Eulerian representation,
that is, on g* that are important for proving existence and uniqueness theo-
rems, theorems on the limit of zero viscosity, and the convergence of numer-
ical algorithms (see Ebin and Marsden [1970], Marsden, Ebin, and Fischer
[1972], and Chorin, Hughes, Marsden, and McCracken [1978]). Finally, we
note that for two-dimensional flow, a collection of Casimir functions is
given by

C(w):/QCI)(w(x))dZm (1.5.10)

for ® : R — R any (smooth) function where wk = V x v is the vorticity.
For three-dimensional flow, (1.5.10) is no longer a Casimir.

Exercises

Exercise 1.5-1. Show that any divergence-free vector field X on R? can
be written globally as a curl of another vector field and can locally be
written as

X =Vf x Vg,

where f and g are real-valued functions on R3. Assume this (so-called
Clebsch-Monge) representation also holds globally. Show that the particles
of fluid, which follow trajectories satisfying & = X (), are trajectories of a
Hamiltonian system with a bracket in the form of Exercise 1.3-2.

6As mentioned earlier, this form of the variational (strictly speaking a Lagrange
d’Alembert type) principle is due to Newcomb [1962]; see also Bretherton [1970]. For
the case of general Lie algebras, it is due to Marsden and Scheurle [1993b]; see also Bloch,
Krishnaprasad, Marsden and Ratiu [1994b]. See also the review article of Morrison [1994]
for a somewhat different perspective.
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1.6 The Maxwell-Vlasov System 21
1.6 The Maxwell-Vlasov System

Plasma physics provides another beautiful application area for the tech-
niques discussed in the preceding sections. We shall briefly indicate these
in this section. The period 1970-1980 saw the development of noncanonical
Hamiltonian structures for the Korteweg-de Vries (KdV) equation (due to
Gardner, Kruskal, Miura, and others; see Gardner [1971]) and other soliton
equations. This quickly became entangled with the attempts to understand
integrability of Hamiltonian systems and the development of the algebraic
approach; see, for example, Gelfand and Dorfman [1979], Manin [1979]
and references therein. More recently these approaches have come together
again; see, for instance, Reyman and Semenov—Tian-Shansky [1990], Moser
and Veselov [19-]. KdV type models are usually derived from or are approx-
imations to more fundamental fluid models and it seems fair to say that the
reasons for their complete integrability are not yet completely understood.

Some History. For fluid and plasma systems, some of the key early
works on Poisson bracket structures were Dashen and Sharp [1968], Goldin
[1971], Iwinski and Turski [1976], Dzyaloshinski and Volovick [1980], Mor-
rison and Greene [1980], and Morrison [1980]. In Sudarshan and Mukunda
[1974], Guillemin and Sternberg [1982], and Ratiu [1980, 1982], a general
theory for Lie—Poisson structures for special kinds of Lie algebras, called
semidirect products, was begun. This was quickly recognized (see, for ex-
ample, Marsden [1982], Marsden, Weinstein, Ratiu, Schmid, and Spencer
[1983], Holm and Kuperschmidt [1983], and Marsden, Ratiu and Weinstein
[1984a,b]) to be relevant to the brackets for compressible flow; see §1.7
below.

Derivation of Poisson Structures. A rational scheme for systemati-
cally deriving brackets is needed, since, for one thing, a direct verification
of Jacobi’s identity can be inefficient and time-consuming. (See Morrison
[1982] and Morrison and Weinstein [1982].) Here we outline a derivation of
the Maxwell-Vlasov bracket by Marsden and Weinstein [1982]. The method
is similar to Arnold’s, namely by performing a reduction starting with:

(i) canonical brackets in a material representation for the plasma; and
(ii) a potential representation for the electromagnetic field.

One then identifies the symmetry group and carries out reduction by this
group in a manner similar to that we desribed for Lie—Poisson systems.

For plasmas, the physically correct material description is actually slightly
more complicated; we refer to Cendra, Holm, Hoyle, and Marsden [1998]
for a full account.

Parallel developments can be given for many other brackets, such as the
charged fluid bracket by Spencer and Kaufman [1982]. Another method,
based primarily on Clebsch potentials, was developed in a series of papers
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22 1.6 The Maxwell-Vlasov System

by Holm and Kupershmidt (for example, [1983]) and applied to a number
of interesting systems, including superfluids and superconductors. They
also pointed out that semidirect products were appropriate for the MHD
bracket of Morrison and Greene [1980].

The Maxwell-Vlasov System. The Maxwell-Vlasov equations for a
collisionless plasma are the fundamental equations in plasma physics’. In
Euclidean space, the basic dynamical variables are:

f(x,v,t) : the plasma particle number density per phase space;
volume d3z d3v;

E(x,t) : the electric field;

B(x,t) : the magnetic field.

)

The equations for a collisionless plasma for the case of a single species
of particles with mass m and charge e are

of of e 1 of

10B

EE = *CUI‘IE, (161)
10E

1
S B - L
cot W A

div E=p; and divB =0.

The current defined by f is given by

ir= e/vf(x,v,t)dgv

and the charge density by

or :e/f(x,v,t)dgv.

Also, 0f/0x and Jf/dv denote the gradients of f with respect to x and
v, respectively, and c is the speed of light. The evolution equation for f
results from the Lorentz force law and standard transport assumptions.
The remaining equations are the standard Maxwell equations with charge
density py and current j¢ produced by the plasma.

Two limiting cases will aid our discussions. First, if the plasma is con-
strained to be static, that is, f is concentrated at v = 0 and ¢-independent,

"See, for example, Clemmow and Dougherty [1959], Van Kampen and Felderhof
[1967], Krall and Trivelpiece [1973], Davidson [1972], Ichimaru [1973], and Chen [1974].
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1.6 The Maxwell-Vlasov System 23

we get the charge-driven Maxwell equations:

10B

EE = —Curl E,

10E _ curl B, (1.6.2)
c Ot

divE=p and divB=0.

Second, if we let ¢ — oo, electrodynamics becomes electrostatics, and we
get the Poisson-Viasov equation:

of .0 _ed¢s OF (1.6.3)

where ~V2¢; = py. In this context, the name “Poisson-Vlasov” seems quite
appropriate. The equation is, however, formally the same as the earlier
Jeans [1919] equation of stellar dynamics. Hénon [1982] has proposed calling
it the “collisionless Boltzmann equation.”

Maxwell’s equations. For simplicity, we let m = e = ¢ = 1. As the basic
configuration space, we take the space A of vector potentials A on R? (for
the Yang—Mills equations this is generalized to the space of connections
on a principal bundle over space). The corresponding phase space T*A is
identified with the set of pairs (A,Y), where Y is also a vector field on R3.
The canonical Poisson bracket is used on 7% A :

[ [8F8G  6F 8G\ 4

The electric field is E = —Y and the magnetic field is B = curl A.
With the Hamiltonian

HAY) =5 [+ [BIP)d*s, (165)

Hamilton’s canonical field equations (1.1.14) are checked to give the equa-
tions for OE/0t and 0A /Jt which imply the vacuum Maxwell’s equations.
Alternatively, one can begin with T'4 and the Lagrangian

L(A,A) = % / (||A||2 IV % A||2) e (1.6.6)

and use the Euler—Lagrange equations and variational principles.

It is of interest to incorporate the equation div E = p and, correspond-
ingly, to use directly the field strengths E and B, rather than E and A. To
do this, we introduce the gauge group G, the additive group of real-valued
functions 9 : R?® — R. Each 9 € G transforms the fields according to the
rule

(A,E) — (A + Vo, E). (1.6.7)
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24 1.6 The Maxwell-Vlasov System

Each such transformation leaves the Hamiltonian H invariant and is a
canonical transformation, that is, it leaves Poisson brackets intact. In this
situation, as above, there will be a corresponding conserved quantity, or
momentum map in the same sense as in §1.3. As mentioned there, some
simple general formulas for computing them will be studied in detail in
Chapter 12. For the action (1.6.7) of G on T™* A, the associated momentum
map is

J(A,Y) =div E, (1.6.8)

so we recover the fact that div E is preserved by Maxwell’s equations (this
is easy to verify directly using div curl = 0). Thus we see that we can
incorporate the equation div E = p by restricting our attention to the set
J=1(p). The theory of reduction is a general process whereby one reduces
the dimension of a phase space by exploiting conserved quantities and sym-
metry groups. In the present case, the reduced space is J~*(p)/G which is
identified with Max,, the space of E’s and B’s satisfying divE = p and
divB = 0.

The space Max, inherits a Poisson structure as follows. If F' and K are
functions on Max,, we substitute E = =Y and B = V x A to express F'
and K as functionals of (A,Y). Then we compute the canonical brackets
on T* A and express the result in terms of E and B. Carrying this out using
the chain rule gives

OF 0K 6K OF\
{F,K}—/<6—E-cur16—B—6—E~cur16—B> d°z, (1.6.9)
where 6F/6E and §F/6B are vector fields, with 6F/éB divergence-free.
These are defined in the usual way; for example,

e—0 ¢

lim 1[F(E +&6E,B) — F(E,B)] = / i—g SE dz. (1.6.10)

This bracket makes Max, into a Poisson manifold and the map (A,Y) —
(=Y,V x A) into a Poisson map. The bracket (1.6.9) was discovered (by
a different procedure) by Pauli [1933] and Born and Infeld [1935]. We refer
to (1.6.9) as the Pauli-Born-Infeld bracket or the Mazwell-Poisson
bracket for Maxwell’s equations.

With the energy H given by (1.6.5) regarded as a function of E and B,
Hamilton’s equations in bracket form F = {F,H} on Max, captures the
full set of Maxwell’s equations (with external charge density p).

The Poisson-Vlasov Equation. Morrison [1980] showed that the Poisson-
Vlasov equations form a Hamiltonian system with

1 1
B =5 [ IVPfcvdados g [I9Pas o)
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1.6 The Maxwell-Vlasov System 25

and the Poisson-Vlasov bracket

oF §G
{F.G} :/f{ﬁ’ﬁ}xvd%d%’ (1.6.12)

where {, }xy is the canonical bracket on (x,v)-space. As was observed in
Gibbons [1981] and Marsden and Weinstein [1982], this is the (4) Lie—
Poisson bracket associated with the Lie algebra g of functions of (x,v)
with Lie bracket the canonical Poisson bracket.

According to the general theory, this Lie—Poisson structure is obtained by
reduction from canonical brackets on the cotangent bundle of the group un-
derlying g, just as was the case for the rigid body and incompressible fluids.
This time the group G = Diff ., is the group of canonical transformations
of (x,v)-space. The Poisson-Vlasov equations can equally well be written
in canonical form on T*G. This is the Lagrangian description of a plasma,
and the Hamiltonian description here goes back to Low [1958], Katz [1961],
and Lundgren [1963]. Thus, one can start with the Lagrangian description
with canonical brackets and, through reduction, derive the brackets here.
There are other approaches to the Hamiltonian formulation using ana-
logues of Clebsch potentials; see, for instance, Su [1961], Zakharov [1971],
and Gibbons, Holm, and Kupershmidt [1982]. See Cendra, Holm, Hoyle,
and Marsden [1997] for further information on these topics.

The Poisson-Vlaslov to Compressible Flow Map. Before going on
to the Maxwell-Vlasov equations, we point out a remarkable connection be-
tween the Poisson-Vlasov bracket (1.6.12) and the bracket for compressible
flow.

The Euler equations for compressible flow in a region Q in R3 are

P <?9_‘t, + (v- V)V> =—-Vp (1.6.13)
and
%—l-di(v)—O (1.6.14)
Y v(pv) =0, .6.

with the boundary condition
v tangent to Of).

Here the pressure p is determined from an internal energy function per
unit mass given by p = p?w’(p), where w = w(p) is the constitutive relation.
(We ignore entropy for the present discussion—its inclusion is starightfor-
ward to deal with.) The compressible fluid Hamiltonian is

1
H= —/p||v||2d3x+/pw(p) dz. (1.6.15)
2 Ja Q
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26 1.6 The Maxwell-Vlasov System

The relevant Poisson bracket is most easily expressed if we use the mo-
mentum density M = pv and density p as our basic variables. The com-
pressible fluid bracket is

oG OF OF 0G
F = [ M-|[=. - _(=. il B 5
{£G) /Q K&M V) SM (51\/1 V) 6M} @
oG OF OF oG
— V) — =5+ V)—|dz. (1.6.16
+/Qp|:<6M )50 <5M )5,0] ool )
The space of (M, p)’s can be shown to be the dual of a semidirect product
Lie algebra and that the preceding bracket is the associated (4) Lie—Poisson
bracket (see Marsden, Weinstein, Ratiu, Schmid, and Spencer [1983], Holm
and Kupershmidt [1983], and Marsden, Ratiu, and Weinstein [1984a,b]).

The relationship with the Poisson-Vlasov bracket is this: suppressing the
time variable, define the map f +— (M, p) by

= VXVB’U 11 X) = X.V 3’U. 0.
M(x)—/ﬂ fE V) and  p(x) /qu)d (16.17)

Remarkably, this plasma to fluid map is a Poisson map taking the Poisson-
Vlasov bracket (1.6.12) to the compressible fluid bracket (1.6.16). In fact,
this map is a momentum map (Marsden, Weinstein, Ratiu, Schmid, and
Spencer [1983]). The Poisson-Vlasov Hamiltonian is not invariant under
the associated group action, however.

The Maxwell-Vlasov Bracket. A bracket for the Maxwell-Vlasov
equations was given by Iwinski and Turski [1976] and Morrison [1980].
Marsden and Weinstein [1982] used systematic procedures involving re-
duction and momentum maps to derive (and correct) the bracket from a
canonical bracket.

The procedure starts with the material description of the plasma as
the cotangent bundle of the group Diff.,, of canonical transformations
of (x, p)-space and the space T*A for Maxwell’s equations. We justify this
by noticing that the motion of a charged particle in a fixed, but (possibly
time-dependent) electromagnetic field via the Lorentz force law defines a
(time-dependent) canonical transformation. On 7% Diff .o, XT*A we put
the sum of the two canonical brackets, and then we reduce. First we reduce
by Diff can, which acts on T* Diff .., by right translation, but does not act on
T*A. Thus we end up with densities fuom (X, p,t) on position-momentum
space and with the space T*A used for the Maxwell equations. On this
space we get the (+) Lie—Poisson bracket, plus the canonical bracket on
T*A. Recalling that p is related to v and A by p = v + A, we let the
gauge group G of electromagnetism act on this space by

(fmom (X, P, 1), A(x,1), Y (x,t)) —
(fmom (%, P + Vo(x),1), A(x,t) + Vo(z), Y(x,1)). (1.6.18)
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The momentum map associated with this action is computed to be

J(fmom, AY) =div E — /fmom(x,p) dp. (1.6.19)

This corresponds to div E — py if we write f(x,v,t) = fmom (X, P — A, ).
This reduced space J~1(0)/G can be identified with the space MV of triples
(f,E,B), satisfying div E = p; and div B = 0. The bracket on MV is
computed by the same procedure as for Maxwell’s equations. These com-
putations yield the following Maxzwell-Vlasov bracket:

{F,K}(f,E,B):/f{Z—Z;,Z—[;} dBx P

_|_/ 5_F lé_K_é_K 16_F 43
B eB e BT

(1.6.20)
o[ (B K B0 i,
OE 6véf OE v of
0 6F 0 6K
B (——x——)dzd®.
+/f <6v5f Xavéf) Ty
With the Maxwell-Vilasov Hamiltonian
HLEB) = [ IvPixvt deds
1
+5 [UBG O + B 0])
the Maxwell-Vlasov equations take the Hamiltonian form
F={F H} (1.6.21)

on the Poisson manifold MV.

Exercises

Exercise 1.6-1. Verify that one obtains the Maxwell equations from the
Maxwell-Poisson bracket.

Exercise 1.6-2. Verify that the action (1.6.7) has the momentum map
J(A,Y) = divE in the sense given in §1.3.

1.7 Nonlinear Stability

There are various meanings that can be given to the word “stability.” In-
tuitively, stability means that small disturbances do not grow large as time
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28 1.7 Nonlinear Stability

passes. Being more precise about this notion is not just mathematical nit-
picking; indeed, different interpretations of the word stability can lead to
different stability criteria. FExamples like the double spherical pendulum
and stratified shear flows that are sometimes used to model oceanographic
phenomena, show that one can get different criteria if one uses linearized
or nonlinear analyses (see Marsden and Scheurle [1993a] and Abarbanel,
Holm, Marsden, and Ratiu [1986]).

Some History. The history of stability theory in mechanics is very com-
plex, but certainly has its roots in the work of Riemann [1860, 1861],
Routh [1877], Thomson and Tait [1879], Poincaré [1885, 1892], and Lia-
punov [1892, 1897].

Since these early references, the literature has become too vast to even
survey roughly. We do mention however, that a guide to the large Soviet
literature may be found in Mikhailov and Parton [1990].

The basis of the nonlinear stability method discussed below was originally
given by Arnold [1965b, 1966b] and applied to two-dimensional ideal fluid
flow, substantially augmenting the pioneering work of Lord Rayleigh [1880].
Related methods were also found in the plasma physics literature, notably
by Newcomb [1958], Fowler [1963], and Rosenbluth [1964]. However, these
works did not provide a general setting or key convexity estimates needed to
deal with the nonlinear nature of the problem. In retrospect, we may view
other stability results, such as the stability of solitons in the Korteweg-de
Vries (KdV) equations due to Benjamin [1972] and Bona [1975] (see also
Maddocks and Sachs [1992]) as being instances of the same method used
by Arnold. A crucial part of the method exploits the fact that the basic
equations of nondissipative fluid and plasma dynamics are Hamiltonian in
character. We shall explain below how the Hamiltonian structures discussed
in the previous sections are used in the stability analysis.

Dynamics and Stability. Stability is a dynamical concept. To explain
it, we shall use some fundamental notions from the theory of dynamical
systems (see, for example, Hirsch and Smale [1974] and Guckenheimer and
Holmes [1983]). The laws of dynamics are usually presented as equations
of motion which we write in the abstract form of a dynamical system:

i = X (u). (1.7.1)

Here, u is a variable describing the state of the system under study, X is
a system-specific function of v and @ = du/dt, where t is time. The set of
all allowed u’s forms the phase space P. For a classical mechanical system,
u is often a 2n-tuple (¢, ... ,q", p1,... ,pn) of positions and momenta and,
for fluids, u is a velocity field in physical space. As time evolves, the state
of the system changes; the state follows a curve u(t) in P. The trajectory
u(t) is assumed to be uniquely determined if its initial condition uy = u(0)
is specified. An equilibrium state is a state u. such that X (u.) = 0. The
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1.7 Nonlinear Stability 29

unique trajectory starting at u. is u. itself; that is, u. does not move in
time.

The language of dynamics has been an extraordinarily useful tool in the
physical and biological sciences, especially during the last few decades. The
study of systems which develop spontaneous oscillations through a mecha-
nism called the Poincaré-Andronov-Hopf bifurcation is an example of such
a tool (see Marsden and McCracken [1976], Carr [1981], and Chow and
Hale [1982], for example). More recently, the concept of “chaotic dynam-
ics” has sparked a resurgence of interest in dynamical systems. This occurs
when dynamical systems possess trajectories that are so complex that they
behave as if they were random. Some believe that the theory of turbulence
will use such notions in its future development. We are not concerned with
chaos directly, although it plays a role in some of what follows. In partic-
ular, we remark that in the definition of stability below, stability does not
preclude chaos. In other words, the trajectories near a stable point can still
be temporally very complex; stability just prevents them from moving very
far from equilibrium.

To define stability, we choose a measure of nearness in P using a “metric”
d. For two points u; and us in P, d determines a positive number denoted
d(uy,us), which is called the distance from u; to us. In the course of a
stability analysis, it is necessary to specify, or construct, a metric appropri-
ate for the problem at hand. In this setting, one says that an equilibrium
state u. is stable when trajectories which start near u. remain near u, for
all ¢ > 0. In precise terms, given any number € > 0, there is § > 0 such
that if d(ug,ue) < 6, then d(u(t),u.) < € for all £ > 0 . Figure 1.7.1 shows
examples of stable and unstable equilibria for dynamical systems whose
state space is the plane.

l.Je J K l."e

@ (b) © ()
FIGURE 1.7.1. The equilibrium point (a) is unstable because the trajectory u(t)
does not remain near u.. Similarly (b) is unstable since most trajectories (even-

tually) move away from u.. The equilibria in (c) and (d) are stable because all
trajectories near u. stay near ue.

Fluids can be stable relative to one distance measure and, simultaneously,
unstable relative to another. This seeming pathology actually reflects im-
portant physical processes; see Wan and Pulvirente [1984].
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Rigid Body Stability. A physical example illustrating the definition of
stability is the motion of a free rigid body. This system can be simulated
by tossing a book, held shut with a rubber band, into the air. It rotates
stably when spun about its longest and shortest axes, but unstably when
spun about the middle axis (Figure 1.7.2). The distance measure defining
stability in this example is a metric in body angular momentum space. We
shall return to this example in detail in Chapter 15 when we study rigid
body stability.

@ O ©

FIGURE 1.7.2. If you toss a book into the air, you can make it spin stably about
its shortest axis (a), and its longest axis (b), but it is unstable when it rotates
about its middle axis (c).

Linearized and Spectral Stability. There are two other ways of treat-
ing stability. First of all, one can linearize equation (1.7.1); if du denotes a
variation in u and X’ (u.) denotes the linearization of X at u. (the matrix
of partial derivatives in the case of finitely many degrees of freedom), the
linearized equations describe the time evolution of “infinitesimal” distur-
bances of u,:

i(éu) = X' (ue) - bu. (1.7.2)
dt

Equation (1.7.1), on the other hand, describes the nonlinear evolution of
finite disturbances Au = u — u.. We say u. is linearly stable if (1.7.2) is
stable at éu = 0, in the sense defined above. Intuitively, this means that
there are no infinitesimal disturbances which are growing in time. If (éu)g
is an eigenfunction of X’(u.), that is, if

X' (ue) - (bu)g = A(6u)g (1.7.3)
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for a complex number A, then the corresponding solution of (1.7.2) with
initial condition (éu)g is

bu = e (6u)q. (1.7.4)

This is growing when A has positive real part. This leads us to the third
notion of stability: we say that (1.7.1) or (1.7.2) is spectrally stable if the
eigenvalues (more precisely points in the spectrum) all have non-positive
real parts. In finite dimensions and, under appropriate technical conditions
in infinite dimensions, one has the following implications:
(stability) = (spectral stability)

and

(linear stability) = (spectral stability).

If the eigenvalues all lie strictly in the left half-plane, then a classical
result of Liapunov guarantees stability. (See, for instance, Hirsch and Smale
[1974] for the finite-dimensional case and Marsden and McCracken [1976],
or Abraham, Marsden, and Ratiu [1988] for the infinite-dimensional case.)
However, in systems of interest to us, the dissipation is very small; our
systems will often be conservative. For such systems the eigenvalues must
be symmetrically distributed under reflection in the real and imaginary
axis. This implies that the only possibility for spectral stability is when
the eigenvalues lie exactly on the imaginary axis. Thus, this version of the
Liapunov theorem is of no help in the Hamiltonian case.

Spectral stability need not imply stability; instabilities can be generated
(even in Hamiltonian systems) through, for example, resonance. Thus, to
obtain general stability results, one must use other techniques to augment
or replace the linearized theory. We give such a technique below.

Here is a planar example of a system which is spectrally stable at the
origin, but which is unstable there. In polar coordinates (r,#), consider the
evolution of v = (r, ) given by

F=r*(1—7r%) and 6=1. (1.7.5)
In (x,y) coordinates this system takes the form
o=@’ +y) (1 -2’ —y’) —y, g =y +y°)(1 -2 =) + 2.

The eigenvalues of the linearized system at the origin are readily verified
to be +4/—1, so the origin is spectrally stable; however, the phase portrait,
shown in Figure 1.7.3 shows that the origin is unstable. (We include the
factor 1 —r? to give the system an attractive periodic orbit—this is merely
to enrich the example and show how a stable periodic orbit can attract
the orbits expelled by an unstable equilibrium.) This is not, however, a
conservative system; next we give two examples of Hamiltonian systems
with similar features.
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32 1.7 Nonlinear Stability

FIGURE 1.7.3. The phase portrait for 7 = r3(1 — r?); 6=1.

Resonance Example. The linear system in R? whose Hamiltonian is
given by
Lo, 1,
H(q,p) = 59" + 54" +pq

has zero as a double eigenvalue so it is spectrally stable. On the other hand,
q(t) = (go + po)t + qo and p(t) = —(go + po)t + po is the solution of this
system with initial condition (go, po), which clearly leaves any neighborhood
of the origin no matter how close to it (qo,po) is. Thus spectral stability
need not imply even linear stability. An even simpler example of the same
phenomenon is given by the free particle Hamiltonian H(q,p) = %p2.

Another higher-dimensional example with resonance in R® is given by the
linear system whose Hamiltonian is H = gap1 — q102 + q4P3 — q3P4 + q2q3-

The general solution with initial condition (¢?,...,p3) is given by
q1(t) = ¢¥ cost + ¢¥sint,
¢2(t) = —qi sint + g5 cost,
q3(t) = ¢S cost + ¢ sint,
¢a(t) = —d5sint + ¢ cost,

0 0
pi(t) = f%gtsintJr %(teost —sint) + pdcost + pYsint,

0 0
pa(t) = f%g(tcostJrsint) - q24tsint — pVsint 4 p$ cost,
a o
ps(t) = Eltsint — ;(tcostJrsint) + p§ cost + pJsint,

0 0
pa(t) = %(tcostfsint) + %Qtsintfpgsintergcost.

One sees that p;(t) leaves any neighborhood of the origin, no matter how
close to the origin the initial conditions (¢?,... ,p}) are, that is, the system
is linearly unstable. On the other hand, all eigenvalues of this linear system
are +i, each a quadruple eigenvalue. Thus, this linear system is spectrally
stable.
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Cherry’s Example. This example is a Hamiltonian system that is spec-
trally stable and linearly stable but is monlinearly unstable. Consider the
Hamiltonian on R* given by

H= %(qf +pt) = (3 +1p3) + %pz(p? —q1) — q1g2p1.- (1.7.6)
This system has an equilibrium at the origin, which is linearly stable since
the linearized system consists of two uncoupled oscillators in the (6g2, 6p2)
and (6q1,8p1) variables, respectively, with frequencies in the ratio 2 : 1
(the eigenvalues are +i and £2i, so the frequencies are in resonance). A
family of solutions (parametrized by a constant 7) of Hamilton’s equations
for (1.7.6) is given by

cos(t — 7 cos2(t—r1
o= _yaeest=n) o cos2t—7)
t—T t—T
(1.7.7)
sin(t — 7 sin2(t — 1
py = yant=1) pp = 20t —7)
t—T1 t—rT1

The solutions (1.7.7) clearly blow up in finite time; however, they start at
time ¢ = 0 at a distance \/g/r from the origin, so by choosing 7 large,
we can find solutions starting arbitrarily close to the origin, yet going to
infinity in a finite time, so the origin is nonlinearly unstable.

Despite the above situation relating the linear and nonlinear theories,
there has been much effort devoted to the development of spectral stability
methods. When instabilities are present, spectral estimates give important
information on growth rates. As far as stability goes, spectral stability
gives necessary, but not sufficient, conditions for stability. In other words,
for the nonlinear problems spectral instability can predict instability, but
not stability, this is a basic result of Liapunov; see Abraham, Marsden,
and Ratiu [1988], for example. Our immediate purpose is the opposite: to
describe sufficient conditions for stability.

Casimir Functions. Besides the energy, there are other conserved quan-
tities associated with group symmetries such as linear and angular mo-
mentum. Some of these are associated with the group that underlies the
passages from material to spatial or body coordinates. These are called
Casimir functions; such a quantity, denoted C, is characterized by the
fact that it Poisson commutes with every function, that is

{C.F}=0 (1.7.8)

for all functions F' on phase space P. We shall study such functions and
their relation with momentum maps in Chapters 10 and 11. For example,
if ® is any function of one variable, the quantity

C(II) = o(||TL|f*) (1.7.9)
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34 1.7 Nonlinear Stability

is a Casimir for the rigid body bracket, as is seen by using the chain rule.
Likewise,

C’(w)z/QCI)(w) dx dy (1.7.10)

is a Casimir function for the two-dimensional ideal fluid bracket. (This
calculation ignores boundary terms that arise in an integration by parts—
see Lewis, Marsden, Montgomery, and Ratiu [1986] for a treatment of these
boundary terms.)

Casimir functions are conserved by the dynamics associated with any
Hamiltonian H since C' = {C, H} = 0. Conservation of (1.7.9) corresponds
to conservation of total angular momentum for the rigid body, while con-
servation of (1.7.10) represents Kelvin’s circulation theorem for the Euler
equations. It provides infinitely many independent constants of the motion
that mutually Poisson commute; that is, {C1,C2} = 0, but this does not
imply that these equations are integrable.

Lagrange—Dirichlet Criterion. For Hamiltonian systems in canonical
form, an equilibrium point (ge, p.) is a point at which the partial derivatives
of H vanish, that is, it is a critical point of H. If the 2n x 2n matriz §2H
f second partial derivatives evaluated at (qe,pe) is positive- or negative-
definite (that is, all the eigenvalues of 6 H (qe, p.) have the same sign), then
(ge, pe) is stable. This follows from conservation of energy and the fact from
calculus, that the level sets of H near (g.,p.) are approximately ellipsoids.
As mentioned earlier, this condition implies, but is not implied by, spectral
stability. The KAM (Kolmogorov, Arnold, Moser) theorem, which gives
stability of periodic solutions for two degree of freedom systems, and the
Lagrange—Dirichlet theorem are the most basic general stability theorems
for equilibria of Hamiltonian systems.

For example, let us apply the Lagrange—Dirichlet theorem to a classical
mechanical system whose Hamiltonian is the form kinetic plus potential
energy. If (ge, pe) is an equilibrium, it follows that p,. is zero. Moreover, the
matrix 62H of second-order partial derivatives of H evaluated at (ge,pe)
block diagonalizes with one of the blocks being the matrix of the quadratic
form of the kinetic energy which is always positive-definite. Therefore, if
6% H is definite, it must be positive-definite and this in turn happens if and
only if 62V is positive-definite at q., where V is the potential energy of
the system. We conclude that for a mechanical system whose Lagrangian
is kinetic minus potential energy, (¢.,0) is a stable equilibrium, provided
the matriz 6V (q.) of second-order partial derivatives of the potential V at
e is positive-definite (or, more generally, q. is a strict local minimum for
V). If 8*V at q. has a negative-definite direction, then q. is an unstable
equilibrium.

The second statement is seen in the following way. The linearized Hamil-
tonian system at (ge,0) is again a Hamiltonian system whose Hamiltonian
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is of the form kinetic plus potential energy, the potential energy being given
by the quadratic form 62V (q.). From a standard theorem in linear algebra,
which states that two quadratic forms, one of which is positive-definite, can
be simultaneously diagonalized, we conclude that the linearized Hamilto-
nian system decouples into a family of Hamiltonian systems of the form

%(5%) = —adq”, %(&Ik) = mik(Spk,

where 1/my > 0 are the eigenvalues of the positive-definite quadratic form
given by the kinetic energy in the variables ép;, and ¢, are the eigenvalues
of 62V (g.). Thus the eigenvalues of the linearized system are given by
++/—c/my. Therefore, if some ¢, is negative, the linearized system has at
least one positive eigenvalue and thus (g, 0) is spectrally and hence linearly
and nonlinearly unstable. For generalizations of this, see Oh [1987], Strauss
[1987], Chern [1997] and references therein.

The Energy-Casimir Method. This is a generalization of the classical
Lagrange-Dirichlet method. Given an equilibrium u, for @ = Xg(u) on a
Poisson manifold P, it proceeds in the following steps.

To test an equilibrium (satisfying X (z.) = 0)) for stability:

Step 1. Find a conserved function C (C will typically be a Casimir func-
tion plus other conserved quantities) such that the first variation van-
ishes:

8(H + C)(ze) = 0.

Step 2. Calculate the second variation

82(H + C)(ze).

Step 3. If 62(H + C)(z.) is definite (either positive or negative), then z.
is called formally stable.

With regard to Step 3, we point out that an equilibrium solution need
not be a critical point of H alone; in general, §H(z.) # 0. An example
where this occurs is a rigid body spinning about one of its principal axes
of inertia. In this case, a critical point of H alone would have zero angular
velocity; but a critical point of H + C' is a (nontrivial) stationary rotation
about one of the principal axes.

The argument used to establish the Lagrange-Dirichlet test formally
works in infinite dimensions too. Unfortunately, for systems with infinitely
many degrees of freedom (like fluids and plasmas), there is a serious techni-
cal snag. The calculus argument used before runs into problems; one might
think these are just technical and that we just need to be more careful
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with the calculus arguments. In fact, there is widespread belief in this “en-
ergy criterion” (see, for instance, the discussion and references in Marsden
and Hughes [1983], Chapter 6, and Potier—Ferry [1982]). However, Ball and
Marsden [1984] have shown using an example from elasticity theory that
the difficulty is genuine: they produce a critical point of H at which §2H
is positive-definite, yet this point is not a local minimum of H. On the
other hand, Potier—Ferry [1982] shows that asymptotic stability is restored
if suitable dissipation is added. Another way to overcome this difficulty is
to modify Step 3 using a convexity argument of Arnold [1966b].

Modified Step 3. Assume P is a linear space.
(a) Let Au = u — u, denote a finite variation in phase space .
(b) Find quadratic functions Q1 and Q2 such that
Q1(Au) < H(ue + Au) — H(ue) — 6H(ue) - Au
and

Q2(Au) < Clue + Au) — C(ue) — 6C(ue) + Au,

(c) Require that Q1(Au) + Q2(Au) > 0 for all Au # 0.
(d) Introduce the norm ||Aul| by
1Au|* = Q1 (Au) + Q2(Au),
so ||Aul| is a measure of the distance from u to ue : d(u,u.) = ||Aul|.
(e) Require that
[H (ue + Au) — H(ue)| < Cf|Aul[
and
|C(ue + Au) = Cue)| < Co| Aul|
for constants o, C1,Co > 0, and ||Au| sufficiently small.

These conditions guarantee stability of u. and provide the distance mea-
sure relative to which stability is defined. The key part of the proof is
simply the observation that if we add the two inequalities in (b), we get

|Au|?* < H(ue + Au) + Clue + Au) — H(ue) — C(ue)

using the fact that § H (u.) - Au and 6C(u.) - Au add up to zero by Step 1.
But H and C' are constant in time so

(A time=tl|* < [H(ue + Au) + C(ue + Au) — H(ue) — C(ue)]

|timc:0 :
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Now employ the inequalities in (e) to get
[(A)time=t [ < (C1 + C2) [ (A)time=ol|*-

This estimate bounds the temporal growth of finite perturbations in
terms of initial perturbations, which is what is needed for stability. For
a survey of this method, additional references and numerous examples, see
Holm, Marsden, Ratiu, and Weinstein [1985].

There are some situations (such as the stability of elastic rods) in which
the above techniques do not apply. The chief reason is that there may be a
lack of sufficiently many Casimir functions to even achieve the first step. For
this reason a modified (but more sophisticated) method has been developed
called the “energy-momentum method.” The key to the method is to avoid
the use of Casimir functions by applying the method before any reduction
has taken place. This method was developed in a series of papers of Simo,
Posbergh, and Marsden [1990, 1991] and Simo, Lewis, and Marsden [1991].
A discussion and additional references are found later in this section.

Gyroscopic Systems. The distinctions between “stability by energy
methods, that is, energetics” and “spectral stability,” become especially
interesting when one adds dissipation. In fact, building on the classical
work of Kelvin and Chetaev, one can prove that if 62H is indefinite, yet
the spectrum is on the imaginary axis, then adding dissipation necessarily
makes the system linearly unstable. That is, at least one pair of eigenval-
ues of the linearized equations move into the right half-plane. This is a
phenomenon called dissipation induced instabilities. This result, along
with related developments, is proved in Bloch, Krishnaprasad, Marsden,
and Ratiu [1991, 1994, 1996]. For example, consider the linear gyroscopic
system

M{+Sq+Vq=0, (1.7.11)

where q € R™, M is a positive-definite symmetric n X n matrix, S is skew,
and V is symmetric. This system is Hamiltonian (Exercise 1.7-2). If V' has
negative eigenvalues, then (1.7.11) is formally unstable. However, due to
S, the system can be spectrally stable. However, if R is positive-definite
symmetric and € > 0 is small, the system with friction

Mg+ Sq+eRq+Vq=0 (1.7.12)
18 linearly unstable. A specific example is given in Exercise 1.7-4.

Outline of the energy-momentum method. The energy momentum
method is an extension of the Arnold (or energy-Casimir) method for the
study of stability of relative equilibria, which was developed for Lie-Poisson
systems on duals of Lie algebras, especially those of fluid dynamical type. In
addition, the method extends and refines the fundamental stability tech-
niques going back to Routh, Liapunov and in more recent times, to the
work of Smale.
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The motivation for these extensions is three fold.

First of all, the energy-momentum method can deal with Lie—Poisson sys-
tems for which there are not sufficient Casimir functions available, such as
3D ideal flow and certain problems in elasticity. In fact, Abarbanel and
Holm [1987] use what can be recognized retrospectively is the energy-
momentum method to show that 3d equilibria for ideal flow are always
formally unstable due to vortex stretching. Other fluid and plasma situ-
ations, such as those considered by Chern and Marsden [1990] for ABC
flows, and certain multiple hump situations in plasma dynamics (see Holm,
Marsden, Ratiu and Weinstein [1985] and Morrison [1987] for example)
provided additional motivation in the Lie—Poisson setting.

A second motivation is to extend the method to systems that need not be
Lie—Poisson and still make use of the powerful idea of using reduced spaces,
as in the original Arnold method. Examples such as rigid bodies with vi-
brating antennas (Sreenath, et al [1988], Oh et al [1989], Krishnaprasad
and Marsden [1987]) and coupled rigid bodies (Patrick [1989]) motivated
the need for such an extension of the theory.

Finally, it gives sharper stability conclusions in material representation
and links with geometric phases.

The idea of the energy-momentum method. The setting of the
energy-momentum method is that of a mechanical system with symmetry
with a configuration space Q and phase space T*@Q and a symmetry group
G acting, with a standard momentum map J : T*Q — g*, where g* is the
Lie algebra of G. Of course one gets the Lie-Poisson case when @ = G.

The rough idea for the energy momentum method is to first formulate
the problem directly on the unreduced space. Here, relative equilibria as-
sociated with a Lie algebra element £ are always critical points of the
augmented Hamiltonian He := H — (J,&). The idea is to now compute the
second variation of H; at a relative equilibria z. with momentum value p.
subject to the constraint J = u. and on a space transverse to the action
of G, . Although the augmented Hamiltonian plays the role of H + C in
the Arnold method, notice that Casimir functions are not required to carry
out the calculations.

The surprising thing is that the second variation of H¢ at the relative
equilibrium can be arranged to be block diagonal, using splittings that are
based on the mechanical connection while, at the same time, the symplectic
structure also has a simple block structure so that the linearized equations
are put into a useful canonical form. Even in the Lie—Poisson setting, this
leads to situations in which one gets much simpler second variations. This
block diagonal structure is what gives the method its computational power.

The general theory for carrying out this procedure was developed in
Simo, Posbergh and Marsden [1990, 1991] and Simo, Lewis and Marsden
[1991]. An exposition of the method may be found, along with additional
references in Marsden [1992]. It has been extended to the singular case by
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Ortega and Ratiu [1997D).

Lagrangian version of the energy-momentum method. The energy
momentum method may also be usefully formulated in the Lagrangian
setting and this setting is very convenient for the calculations in many
examples. The general theory for this was done in Lewis [1992] and Wang
and Krishnaprasad [1992]. This Lagrangian setting is closely related to
the general theory of Lagrangian reduction we shall come to later on. In
this context one reduces variational principles rather than symplectic and
Poisson structures and for the case of reducing the tangent bundle of a Lie
group, it leads to the Euler-Poincaré equations rather than the Lie—Poisson
equations.

Effectiveness in examples. The energy momentum method has proven
its effectiveness in a number of examples. For instance, Lewis and Simo
[1990] were able to deal with the stability problem for pseudo-rigid bodies,
which was thought up to that time to be analytically intractable.

The energy-momentum method can sometimes be used in contexts where
the reduced space is singular or at nongeneric points in the dual of the
Lie algebra. This is done at singular points in Lewis, Ratiu, Simo and
Marsden [1992] who analyze the heavy top in great detail and, in the Lie—
Poisson setting for compact groups at nongeneric points in the dual of
the Lie algebra, in Patrick [1992, 1995]. One of the key things is to keep
track of group drifts because the isotropy group G, can change for nearby
points, and these are of course very important for the reconstruction process
and for understanding the Hannay-Berry phase in the context of reduction
(see Marsden, Ratiu and Montgomery [1990] and references therein). For
noncompact groups and an application to the dynamics of rigid bodies in
fluids (underwater vehicles), see Leonard and Marsden [1997]. Additional
work in this area is still needed in the context of singular reduction.

The celebrated Benjamin-Bona theorem on stability of solitons for the
KdV equation can be viewed as an instance of the energy momentum
method, see also Maddocks and Sachs [1957], and for example, Oh [1987]
and Grillakis Shatah and Strauss [1987], although of course there are many
subtelties in the pde context.

Hamiltonian bifurcations. The energy-momentum method has also
been used in the context of Hamiltonian bifurcation problems. One such
context is that of free boundary problems building on the work of Lewis,
Montgomery, Marsden and Ratiu [1986] which gives a Hamiltonian struc-
ture for dynamic free boundary problems (surface waves, liquid drops, etc),
generalizing Hamiltonian structures found by Zakharov. Along with the
Arnold method itself, this is used for a study of the bifurcations of such
problems in Lewis, Marsden and Ratiu [1987], Lewis, [1989, 1992], Kruse,
Marsden, and Scheurle [1993] and other references cited therein.
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Converse to the energy-momentum method. Because of the block
structure mentioned, it has also been possible to prove, in a sense, a con-
verse of the energy-momentum method. That is, if the second variation is
indefinite, then the system is unstable. One cannot, of course hope to do
this literally as stated since there are many systems (eg, examples stud-
ied by Chetayev) which are formally unstable, and yet their linearizations
have eigenvalues lying on the imaginary axis. Most of these are presum-
ably unstable due to Arnold diffusion, but of course this is a very delicate
situation to prove analytically. Instead, the technique is to show that with
the addition of dissipation, the system is destabilized. This idea of dissipa-
tion induced instability goes back to Thomson and Tait in the last century.
In the context of the energy-momentum method, Bloch, Krishnaprasad,
Marsden and Ratiu [1994,1996] show that with the addition of appropriate
dissipation, the indefinitness of the second variation is sufficient to induce
linear instability in the problem.

There are related eigenvalue movement formulas (going back to Krein)
that are used to study non-Hamiltonian perturbations of Hamiltonian nor-
mal forms in Kirk, Marsden and Silber [1996]. There are interesting analogs
of this for reversible systems in Reilly, Malhotra, and Namamchchivaya
[1996].

Extension of the energy-momentum method to nonholonomic sys-
tems. The energy-momentum method also extends to the case of non-
holonomic systems. Building on the work on nonholonomic systems in
Arnold [1988], Bates and Sniatycki [1993] and Bloch, Krishnaprasad, Mars-
den and Murray [1996], on the example of the Routh problem in Zenkov
[1995] and on the large Russian literature in this area, Zenkov, Bloch and
Marsden [1997] show that there is a generalization to this setting. The
method is effective in the sense that it applies to a wide variety of interest-
ing examples, such as the rolling disk and a three wheeled vehicle known
as the the roller racer.

Exercises

o Exercise 1.7-1. Work out Cherry’s example of the Hamiltonian system
in R* whose energy function is given by (1.7.6). Show explicitly that the
origin is a linearly and spectrally stable equilibrium but that it is nonlin-
early unstable by proving that (1.7.7) is a solution for every 7 > 0 which
can be chosen to start arbitrarily close to the origin and which goes to
infinity for ¢t — 7.

o Exercise 1.7-2. Show that (1.7.11) is Hamiltonian with p = Mq,

1 - 1
H(q,p) = 5p- M 1p+§q-V01
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and

OF OK 0K OF . 0F 0K
dq* dp;  Oq' Op; Op; Op;’

o Exercise 1.7-3. Show that (up to an overall factor) the characteristic
polynomial for the linear system (1.7.11) is

p(\) = det[N\2M 4+ \S + V]

and that this actually is a polynomial of degree n in A2

o Exercise 1.7-4. Consider the two-degree of freedom system

T—gy+yr+ar=0,
J+9&+6y+ Py =0.

(a) Write it in the form (1.7.12).
(b) For v =6 = 0 show:

(i) it is spectrally stable if & > 0,3 > 0;
(ii) for a8 < 0, it is spectrally unstable;

(iii) for @ < 0,8 < 0, it is formally unstable (that is, the energy
function, which is a quadratic form, is indefinite); and

A. if D := (¢ + a + )% — 4a8 < 0, then there are two roots
in the right half-plane and two in the left; the system is
spectrally unstable;

B. if D =0 and g? + a + 3 > 0 the system is spectrally stable,
but if g2 + o+ B < 0 then it is spectrally unstable; and

C. if D > 0 and ¢g? + a + 3 > 0 the system is spectrally stable,
but if g2 + o+ 3 < 0, then it is spectrally unstable.

(c) For a polynomial p(A) = A* + p1A3 + paA? + p3) + py, the Routh—
Hurwitz criterion (see Gantmacher [1959], Volume 2)) says that the
number of right half-plane zeros of p is the number of sign changes
of the sequence

{1 P1p2 — P3 P3P1P2 — ﬂ:%, — 040% }
y P1, ) s P4 (-
P1 P1pP2 — P3

Apply this to the case in which a < 0,3 < 0,92 +a + 3 > 0, and at
least one of y or ¢ is positive to show that the system is spectrally
unstable.
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1.8 Bifurcation

When the energy-momentum or energy-Casimir method indicates that an
instability might be possible, techniques of bifurcation theory can be brought
to bear to determine the emerging dynamical complexities such as the de-
velopment of multiple equilibria and periodic orbits.

Ball in a Rotating Hoop. For example, consider a particle moving
with no friction in a rotating hoop (Figure 1.8.1).

g = acceleration
due to gravity

FIGURE 1.8.1. A particle moving in a hoop rotating with angular velocity w.

In §2.8 we derive the equations and study the phase portraits for this
system. One finds that as w increases past 1/g/R, the stable equilibrium at
0 = 0 becomes unstable through a Hamiltonian pitchfork bifurcation and
two new solutions are created. These solutions are symmetric in the vertical
axis, a reflection of the original Zy symmetry of the mechanical system in
Figure 1.8.1. Breaking this symmetry by, for example, putting the rotation
axis slightly off-center is an interesting topic that we shall discuss in §2.8.

Rotating Liquid Drop. The system consists of the two-dimensional
Euler equations for an ideal fluid with a free boundary. An equilibrium
solution consists of a rigidly rotating circular drop. The energy-Casimir
method shows stability provided that

3
Q< 2\/R—2. (1.8.1)

In this formula, Q is the angular velocity of the circular drop, R is its
radius, and 7 is the surface tension, a constant. As 2 increases and (1.8.1)
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is violated, the stability of the circular solution is lost and is picked up by
elliptical-like solutions with Zs X Zs symmetry. The bifurcation is actually
subcritical relative to € (that is, the new solutions occur below the critical
value of 1) and is supercritical (the new solutions occur above criticality)
relative to the angular momentum. This is proved in Lewis, Marsden, and
Ratiu [1987] and Lewis [1989], where other references may also be found
(see Figure 1.8.2).

‘/_\
increasing
angular
momentum
——
circular stable solutions uniformly rotating elliptical-like solutions

FIGURE 1.8.2. A circular liquid drop losing its stability and its symmetry.

For the ball in the hoop, the eigenvalue evolution for the linearized equa-
tions is shown in Figure 1.8.3(a). For the rotating liquid drop the movement
of eigenvalues is the same: they are constrained to stay on the imaginary
axis because of the symmetry of the problem. Without this symmetry,
eigenvalues typically split, as in Figure 1.8.3(b). These are examples of a
general theory of the movement of such eigenvalues given in Golubitsky and
Stewart [1987], Dellnitz, Melbourne, and Marsden [1992], and Knobloch,
Mahalov, and Marsden [1994].

(a) with symmetry (b) without symmetry

F1GURE 1.8.3. The movement of eigenvalues in bifurcation of equilibria.
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More Examples. Another example is the heavy top: a rigid body with
one point fixed, moving in a gravitational field. When the top makes the
transition from a fast top to a slow top, the angular velocity w decreasess
pas the critical value

2/ Mqll,

I (1.8.2)

We =

stability is lost, and a resonance bifurcation occurs. Here, when the
bifurcation occurs, the eigenvalues of the equations linearized at the equi-
librium behave as in Figure 1.8.4.

C y fast-slow y C
—_—_—
transition
i ) o —>
X X
B ) o —>

FIGURE 1.8.4. Eigenvalue movement in the Hamiltonian Hopf bifurcation.

For an extensive study of bifurcations and stability in the dynamics of
a heavy top, see Lewis, Ratiu, Simo, and Marsden [1992]. Behavior of this
sort is sometimes called a Hamiltonian Krein-Hopf bifurcation, or a
gyroscopic instability (see Van der Meer [1985, 1990]). Here more com-
plex dynamic behavior ensues, including periodic and chaotic motions (see
Holmes and Marsden [1983]). In some systems with symmetry, the eigen-
values can pass as well as split, as has been shown by Dellnitz, Melbourne,
and Marsden [1992] and references therein.

More sophisticated examples, such as the dynamics of two coupled three-
dimensional rigid bodies requires a systematic development of the basic
theory of Golubitsky and Schaeffer [1985] and Golubitsky, Stewart, and
Schaeffer [1988]. This theory is begun in, for example, Duistermaat [1983],
Lewis, Marsden, and Ratiu [1987], Lewis [1989], Patrick [1989], Meyer and
Hall [1992], Broer, Chow, Kim, and Vegter [1993], and Golubitsky, Mars-
den, Stewart, and Dellnitz [1994]. For bifurcations in the double spherical
pendulum (which includes a Hamiltonian-Krein-Hopf bifurcation), see Dell-
nitz, Marsden, Melbourne, and Scheurle [1992] and Marsden and Scheurle
[1993a).
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Exercises

Exercise 1.8-1. Study the bifurcations (changes in the phase portrait)
for the equation

F4pr+22=0

as p passes through zero. Use the second derivative test on the potential
energy discussed in §1.10.

Exercise 1.8-2. Repeat Exercise 1.8-1 for
F+pr+ad=0

as u passes through zero.

1.9 The Poincaré-Melnikov Method and
Chaos

The Forced Pendulum. To begin with a simple example, consider the
equation of a forced pendulum

é + sin ¢ = ecoswt. (1.9.1)

Here w is a constant angular forcing frequency and e is a small parameter.
Systems of this or a similar nature arise in many interesting situations.
For example, a double planar pendulum and other “executive toys” exhibit
chaotic motion that is analogous to the behavior of this equation; see Burov
[1986] and Shinbrot, Grebogi, Wisdom, and Yorke [1992].

For e = 0 this has the phase portrait of a simple pendulum (the same as
shown later in Figure 2.8.2a). For € small but nonzero, (1.9.1) possesses no
analytic integrals of the motion. In fact, it possesses transversal intersect-
ing stable and unstable manifolds (separatrices); that is, the Poincaré maps
Py, : R? — R? that advance solutions by one period 7' = 27 /w starting at
time ty possess transversal homoclinic points. This type of dynamic behav-
ior has several consequences, besides precluding the existence of analytic
integrals, that lead one to use the term “chaotic.” For example, (1.9.1) has
infinitely many periodic solutions of arbitrarily high period. Also, using the
shadowing lemma, one sees that given any bi-infinite sequence of zeros and
ones (for example, use the binary expansion of e or 7), there exists a corre-
sponding solution of (1.9.1) that successively crosses the plane ¢ = 0 (the
pendulum’s vertically downward configuration) with ¢ > 0 corresponding
to a zero and ¢ < 0 corresponding to a one. The origin of this chaos on
an intuitive level lies in the motion of the pendulum near its unperturbed
homoclinic orbit, the orbit that does one revolution in infinite time. Near
the top of its motion (where ¢ = +) small nudges from the forcing term
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can cause the pendulum to fall to the left or right in a temporally complex
way.

The dynamical systems theory needed to justify the preceding statements
is available in Smale [1967], Moser [1973], Guckenheimer and Holmes [1983],
and Wiggins [1988, 1990]. Some key people responsible for the development
of the basic theory are Poincaré, Birkhoff, Kolmogorov, Melnikov, Arnold,
Smale, and Moser. The idea of transversal intersecting separatrices comes
from Poincaré’s famous paper on the three-body problem (Poincaré [1890]).
His goal, not quite achieved for reasons we shall comment on later, was to
prove the nonintegrability of the restricted three body problem and that
various series expansions used up to that point diverged (he began the
theory of asymptotic expansions and dynamical systems in the course of
this work). See Diacu and Homes [1996] for additional information about
Poincaré’s work.

Although Poincaré had all the essential tools needed to prove that equa-
tions like (1.9.1) are not integrable (in the sense of having no analytic
integrals), his interests lay with harder problems and he did not develop
the easier basic theory very much. Important contributions were made by
Melnikov [1963] and Arnold [1964] which lead to a simple procedure for
proving that (1.9.1) is not integrable. The Poincaré-Melnikov method was
revived by Chirikov [1979], Holmes [1980b] and Chow, Hale, and Mallet-
Paret [1980]. We shall give the method for Hamiltonian systems. We refer
to Guckenheimer and Holmes [1983] and to Wiggins [1988, 1990] for gen-
eralizations and further references.

The Poincaré-Melnikov Method. This method proceeds as follows:
1. Write the dynamical equation to be studied in the form
&= Xo(x) + X4 (z,t), (1.9.2)

where z € R?, X, is a Hamiltonian vector field with energy Hy, X; is
periodic with period 7" and is Hamiltonian with energy a 7T-periodic
function H;. Assume that X, has a homoclinic orbit Z(¢) so ZT(t) —
To, a hyperbolic saddle point, as ¢ — +o0.

2. Compute the Poincaré-Melnikov function defined by

Mit) = /OO (Ho, Hy Y (3(t — to), 1) dt (1.9.3)

where {,} denotes the Poisson bracket.

If M(tp) has simple zeros as a function of tg, then (1.9.2) has, for
sufficiently small €, homoclinic chaos in the sense of transversal in-
tersecting separatrices (in the sense of Poincaré maps as mentioned
above).
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We shall prove this result in §2.11. To apply it to equation (1.9.1) one
proceeds as follows. Let © = (¢, ¢) so we get

dl o] é 0
E[é}_{—sinqb}—’—e[coswt]'

The homoclinic orbits for e = 0 are given by (see Exercise 1.9-1)

o-[G]-[ 5]

and one has
Hy(o, ¢) = %(]52 —cos¢ and H1(¢,¢37 t) = ¢ coswt. (1.9.4)

Hence (1.9.3) gives

[ (0Ho0H, OHyOH\\ _,
M(to)—/ <a¢ 3 " o9 a¢>(x(t to), t) dt

:—/ d(t — to) coswt dt

— 00

= :F/ [2 sech(t — tg) cos wt] dt.

— 00

Changing variables and using the fact that sech is even and sin is odd, we
get

M(ty) = F2 </ sech ¢ coswt dt) cos(wtp).

The integral is evaluated by residues (see Exercise 1.9-2):
Tw
M(to) = F27 sech (7) cos(wtp), (1.9.5)

which clearly has simple zeros. Thus, this equation has chaos for ¢ small
enough.

Exercises

Exercise 1.9-1. Verify directly that the homoclinic orbits for the simple
pendulum equation ¢ + sin ¢ = 0 are given by ¢(t) = +2tan~!(sinht).

Exercise 1.9-2. Evaluate the integral [~°_sech ¢ cos wt dt to prove (1.9.5)

as follows. Write sech ¢t = 2/(e! + e™t) and note that there is a simple pole
of

ezwz + e—’LUJZ

Z) =
Fe) =
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in the complex plane at z = mi/2. Evaluate the residue there and apply

Cauchy’s theorem 8.

1.10 Resonances, Geometric Phases, and
Control

The work of Smale [1970] shows that topology plays an important role
in mechanics. Smale’s work employs Morse theory applied to conserved
quantities such as the energy-momentum map. In this section we point out
other ways in which geometry and topology enter mechanical problems.

The One-to-One Resonance. When one considers resonant systems
one often encounters Hamiltonians of the form

1 A
H= E(qf +p?) + §(q§ + p3) + higher-order terms. (1.10.1)

The quadratic terms describe two oscillators that have the same frequency
when A = 1, which is why one speaks of a one-to-one resonance. To analyze
the dynamics of H, it is important to utilize a good geometric picture for
the critical case

1
Hy = (g + i + 63 + p3)- (1.10.2)

The energy level Hy = constant is the three-sphere S® C R*. If we think of
Hyj as a function on C? by letting

z1=q +ip1 and 2z = g2 +ipo,

then Hy = (|21]® + |22]?)/2 and so Hj is left-invariant by the action of
SU(2), the group of complex 2 x 2 unitary matrices of determinant one.
The corresponding conserved quantities are

W1 = 2(q192 + p1p2),
W2 = 2(g2p1 — a1p2), (1.10.3)
W3 =qi +p; — 43 — p3,

which comprise the components of a (momentum) map

J:R* - R3. (1.10.4)

8Consult a book on complex variables such as Marsden and Hoffman, Basic Complex
Analysis, Third Edition, Freeman, 1998.
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From the relation 4HZ = W32 + W3 + W2, one finds that J restricted to
S3 gives a map

j: 8% — 82 (1.10.5)

The fibers j~!(point) are circles and the dynamics of Hy moves along these
circles. The map j is the Hopf fibration which describes S® as a topo-
logically nontrivial circle bundle over S$2. The role of the Hopf fibration in
mechanics was known to Reeb [1949].

One also finds that the study of systems like (1.10.1) that are close to
Hy can, to a good approximation, be reduced to dynamics on S?. These
dynamics are in fact Lie-Poisson and S? sits as a coadjoint orbit in s0(3)*,
so the evolution is of rigid body type, just with a different Hamiltonian.
For a computer study of the Hopf fibration in the one-to-one resonance,
see Kocak, Bisshopp, Banchoff, and Laidlaw [1986].

The Hopf Fibration in Rigid Body Mechanics. When doing reduc-
tion for the rigid body, one studies the reduced space

I7H ) /G =37/ S,

which in this case is the sphere S?. Also, as we shall see in Chapter 15,
J=1(u) is topologically the same as the rotation group SO(3), which in
turn is the same as S®/Zy. Thus, the reduction map is a map of SO(3)
to S2. Such a map is given explicitly by taking an orthogonal matrix A
and mapping it to the vector on the sphere given by Ak, where k is the
unit vector along the z-axis. This map that does the projection is in fact
a restriction of a momentum map and is, when composed with the map
of §3 = SU(2) to SO(3), just the Hopf fibration again. Thus, not only
does the Hopf fibration occur in the one-to-one resonance, it occurs in the
rigid body in a matural way as the reduction map from material to body
representation!

Geometric Phases. The history of this concept is complex. We refer
to Berry [1990] for a discussion of the history, going back to Bortolotti in
1926, Vladimirskii and Rytov in 1938 in the study of polarized light, to Kato
in 1950 and Longuet-Higgins and others in 1958 in atomic physics. Some
additional historical comments regarding phases in rigid body mechanics
are given below.

We pick up the story with the classical example of the Foucault pendu-
lum. The Foucault pendulum gives an interesting phase shift (a shift in the
angle of the plane of the pendulum’s swing) when the overall system un-
dergoes a cyclic evolution (the pendulum is carried in a circular motion due
to the Earth’s rotation). This phase shift is geometric in character: if one
parallel transports an orthonormal frame along the same line of latitude,
it returns with a phase shift equaling that of the Foucault pendulum. This
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cut and
unroll cone

parallel trandlate
frameaong a
line of latitude

FI1GURE 1.10.1. The geometric interpretation of the Foucault pendulum phase
shift.

phase shift A@ = 27 cos @ (where « is the co-latitude) has the geometric
meaning shown in Figure 1.10.1.

In geometry, when an orthonormal frame returns after traversing a closed
path to its original position but rotated, the rotation is referred to as
holonomy (or anholonomy). This is a unifying mathematical concept
that underlies many geometric phases in systems such as fiber optics, MRI
(magnetic resonance imaging), amoeba propulsion, molecular dynamics,
micromotors, and other effects. These applications represent one reason
why the subject is of such current interest.

In the quantum case a seminal paper on geometric phases is Kato [1950].
It was Berry [1984, 1985], Simon [1984], Hannay [1985], and Berry and
Hannay [1988] who realized that holonomy is the crucial geometric unify-
ing thread. On the other hand, Golin, Knauf, and Marmi [1989], Mont-
gomery [1988], and Marsden, Montgomery, and Ratiu [1989, 1990] demon-
strated that averaging connections and reduction of mechanical systems
with symmetry also plays an important role, both classically and quantum
mechanically. Aharonov and Anandan [1987] have shown that the geomet-
ric phase for a closed loop in projectivized complex Hilbert space occurring
in quantum mechanics equals the exponential of the symplectic area of a
two-dimensional manifold whose boundary is the given loop. The symplec-
tic form in question is naturally induced on the projective space from the
canonical symplectic form of complex Hilbert space (minus the imaginary
part of the inner product) via reduction. Marsden, Montgomery, and Ratiu
[1990] show that this formula is the holonomy of the closed loop relative to
a principal S'-connection on the unit ball of complex Hilbert space and is
a particular case of the holonomy formula in principal bundles with abelian
structure group.
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Geometric Phases and Locomotion. Geometric phases naturally oc-
cur is in families of integrable systems depending on parameters. Consider
an integrable system with action-angle variables

(-[17125"' 7[,”,91,92,... aen)a

assume the Hamiltonian H(Iy, Io,...I,;m) depends on a parameter m €
M. This just means that we have a Hamiltonian independent of the angular
variables 6 and we can identify the configuration space with an n-torus T".
Let ¢ be a loop based at a point mg in M. We want to compare the angular
variables in the torus over mg, once the system is slowly changed as the
parameters undergo the circuit ¢. Since the dynamics in the fiber varies as
we move along ¢, even if the actions vary by a negligible amount, there will
be a shift in the angle variables due to the frequencies w' = OH/OI* of the
integrable system; correspondingly, one defines

1
dynamic phase :/ w' (I, c(t)) dt.
0

Here we assume that the loop is contained in a neighborhood whose stan-
dard action coordinates are defined. In completing the circuit ¢, we return
to the same torus, so a comparison between the angles makes sense. The
actual shift in the angular variables during the circuit is the dynamic
phase plus a correction term called the geometric phase. One of the key
results is that this geometric phase is the holonomy of an appropriately con-
structed connection called the Hannay-Berry connection on the torus
bundle over M which is constructed from the action-angle variables. The
corresponding angular shift, computed by Hannay [1985], is called Han-
nay’s angles, so the actual phase shift is given by

A0 = dynamic phases + Hannay’s angles.

The geometric construction of the Hannay-Berry connection for classical
systems is given in terms of momentum maps and averaging in Golin,
Knauf, and Marmi [1989] and Montgomery [1988]. Weinstein [1990] makes
precise the geometric structures which make possible a definition of the
Hannay angles for a cycle in the space of lagrangian submanifolds, even
without the presence of an integrable system. Berry’s phase is then seen as
a “primitive” for the Hannay angles. A summary of this work is given in
Woodhouse [1992].

Another class of examples where geometric phases naturally arise is in the
dynamics of coupled rigid bodies. The three dimensional single rigid body is
discussed below. For several coupled rigid bodies, the dynamics can be quite
complex. For instance, even for bodies in the plane, the dynamics is known
to be chaotic, despite the presence of stable relative equilibria; see Oh,
Sreenath, Krishnaprasad, and Marsden [1989]. Geometric phase phenom-
ena for this type of example are quite interesting and are related to some of
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the work of Wilczek and Shapere on locomotion in micro-organisms. (See,
for example, Shapere and Wilczek [1987, 1989] and Wilczek and Shapere
[1989].) In this problem, control of the system’s internal variables can lead
to phase changes in the ezternal variables. These choices of variables are
related to the variables in the reduced and the unreduced phase spaces. In
this setting one can formulate interesting questions of optimal control such
as “When a cat falls and turns itself over in mid-flight (all the time with
zero angular momentum!) does it do so with optimal efficiency in terms of,
say, energy expended?” There are interesting answers to these questions
that are related to the dynamics of Yang—Mills particles moving in the
associated gauge field of the problem. See Montgomery [1984, 1990] and
references therein.

We give two simple examples of how geometric phases for linked rigid
bodies works. Additional details can be found in Marsden, Montgomery,
and Ratiu [1990]. First, consider three uniform coupled bars (or coupled
planar rigid bodies) linked together with pivot (or pin) joints, so the bars
are free to rotate relative to each other. Assume the bars are moving freely
in the plane with no external forces and that the angular momentum is
zero. However, assume that the joint angles can be controlled with, say,
motors in the joints. Figure 1.10.2 shows how the joints can be manipulated,
each one going through an angle of 2m and yet the overall assemblage
rotates through an angle w. Here we assume that the moments of inertia
of the two outside bars (about an axis through their centers of mass and
perpendicular to the page) are each one-half that of the middle bar. The
statement is verified by examining the equation for zero angular momentum
(see, for example Sreenath, Oh, Krishnaprasad, and Marsden [1988] and
Oh, Sreenath, Krishnaprasad, and Marsden [1989]). General formulas for
the reconstruction phase applicable to examples of this type are given in
Krishnaprasad [1989).

A second example is the dynamics of linkages. This type of example is
considered in Krishnaprasad [1989], Yang and Krishnaprasad [1990], includ-
ing comments on the relation with the three-manifold theory of Thurston.
Here one considers a linkage of rods, say four rods linked by pivot joints
as in Figure 1.10.3. The system is free to rotate without external forces or
torques, but there are assumed to be torques at the joints. When one turns
the small “crank” the whole assemblage turns even though the angular
momentum, as in the previous example, stays zero.

For an overview of how geometric phases are used in robotic locomotion
problems, see Marsden and Ostrowski [1997].

Phases in Rigid Body Dynamics. As we shall see in Chapter 15,
the motion of a rigid body is a geodesic with respect to a left-invariant
Riemannian metric (the inertia tensor) on SO(3). The corresponding phase
space is P = T*SO(3) and the momentum map J : P — R3 for the left
SO(3) action is right translation to the identity. We identify so(3)* with
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FIGURE 1.10.2. Manipulating the joint angles can lead to an overall rotation of
the system.

overall phase
rotation of
the assemblage

FI1GURE 1.10.3. Turning the crank can lead to an overall phase shift.

50(3) via the Killing form and identify R with so(3) via the map v — 9,
where 9(w) = v X w, X being the standard cross product. Points in s0(3)*
are regarded as the left reduction of T*SO(3) by G = SO(3) and are
the angular momenta as seen from a body-fized frame. The reduced spaces
P, = J7Y(u)/G, are identified with spheres in R3 of Euclidean radius
|||, with their symplectic form w, = —dS/||u|, where dS is the standard
area form on a sphere of radius ||u|| and where G,, consists of rotations
about the p-axis. The trajectories of the reduced dynamics are obtained by
intersecting a family of homothetic ellipsoids (the energy ellipsoids) with
the angular momentum spheres. In particular, all but at most four of the
reduced trajectories are periodic. These four exceptional trajectories are
the well-known homoclinic trajectories; we shall determine them explicitly
in §15.8.

Suppose a reduced trajectory II(t) is given on P,, with period T. Af-
ter time T, by how much has the rigid body rotated in space? The spatial
angular momentum is 7 = pu = gII, which is the conserved value of J.
Here g € SO(3) is the attitude of the rigid body and II is the body angu-
lar momentum. If II(0) = II(T'), then p = g(0)II(0) = ¢g(T)II(T") and so
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g(T)"tu = g(0)~ 1, that is, g(T)g(0)~'p is a rotation about the axis y.
We want to give the angle of this rotation.

To answer this question, let ¢(t) be the corresponding trajectory in
J=1(pu) C P.Identify T* SO(3) with SO(3) x R? by left trivialization, so c(t)
gets identified with (g(t),II(¢)). Since the reduced trajectory IL(t) closes
after time T, we recover the fact that ¢(T") = gc¢(0) for some g € G,,. Here,
g=9g(T)g(0)~! in the preceding notation. Thus, we can write

g = exp[(AH)(], (1.10.6)

where ¢ = p/||p|| identifies g, with R by a( +— a, for a € R. Let D be one
of the two spherical caps on S? enclosed by the reduced trajectory, let A be
the corresponding oriented solid angle, that is, |A| = (area D)/|u|/?, and
let H,, be the energy of the reduced trajectory. See Figure 1.10.4. All norms
are taken relative to the Euclidean metric of R®. Montgomery [1991a] and
Marsden, Montgomery, and Ratiu [1990] show that modulo 27, we have
the rigid body phase formula

1 2H,T
Ag:_{/w +2H T}z—A+—”- (1.10.7)
el W ™" ! [l
/truetra'ectory

dynamic phase — horizontal lift

geometric phase/
L
- reduced trajectory
D— i . \ /

FIGURE 1.10.4. The geometry of the rigid body phase shift formula.
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More History. The history of this formula is quite interesting and seems
to have proceeded independently of the other developments above®. The
formula has its roots in MacCullagh [1840] and Thomson and Tait [1867,
§8123, 126]. (See Zhuravlev [1996] and O’Reilly [1997] for a discussion and
extensions). A special case of formula (1.10.7) is given in Ishlinskii [1952];
see also Ishlinskii [1963]. On page 195 of a later book on mechanics, Ish-
linskii [1976] notes that “the formula was found by the author in 1943 and
was published in Ishlinskii [1952].” The formula referred to in the works
of Ishlinskii covers a special case in which only the geometric phase is
present. For example, in certain precessional motions in which, up to a
certain order in averaging, one can ignore the dynamic phase and only the
geometric phase survives. Even though Ishlinskii only found special cases
of the result, he recognized that it is related to the geometric concept of
parallel transport. The formula presented above was found by Goodman
and Robinson [1958] in the context of drift in gyroscopes; their proof is
based on the Gauss-Bonnet theorem. The special case of this formula for
a symmetric free rigid body was given by Hannay [1985] and Anandan
[1988], formula (20). The proof of the general formula based on the the-
ory of connections and the formula for holonomy in terms of curvature,
was given by Montgomery [1991] and Marsden, Montgomery, and Ratiu
[1990]. The approach using the Gauss-Bonnet theorem and its relation to
the Poinsot construction along with additional results is taken up by Levi
[1993]. For applications to general resonance problems (such as the three-
wave interaction) and nonlinear optics, see Alber, Luther, Marsden, and
Robbins [1998].

Satellites with Rotors and Underwater Vehicles. Another example
which naturally gives rise to geometric phases is the rigid body with one
or more internal rotors. Figure 1.10.5 illustrates the system considered.

To specify the position of this system we need an element of the group
of rigid motions of R? to place the center of mass and the attitude of
the carrier, and an angle (element of S!) to position each rotor. Thus the
configuration space is @ = SE(3) x S! x S x S. The equations of motion
of this system are an extension of Euler’s equations of motion for a free
spinning rotor. Just as holding a spinning bicycle wheel while sitting on
a swivel chair can affect the carrier’s motion, so the spinning rotors can
affect the dynamics of the rigid carrier.

In this example, one can analyze equilibria and their stability in much the
same way as one can with the rigid body. However, what one often wants to
do is to forcibly spin, or control, the rotors so that one can achieve attitude
control of the structure in the same spirit that a falling cat has control of
its attitude by manipulating its body parts while falling. For example, one
can attempt to prescribe a relation between the rotor dynamics and the

9We thank V. Arnold for valuable help with these comments.
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rigid carrier

spinning rotors

F1GURrE 1.10.5. The rigid body with internal rotors.

rigid body dynamics by means of a feedback law. This has the property
that the total system angular momentum is still preserved and that the
resulting dynamic equations can be expressed entirely in terms of the free
rigid body variable. (A falling cat has zero angular momentum even though
it is able to turn over!) In some cases the resulting equations are again
Hamiltonian on the invariant momentum sphere. Using this fact, one can
compute the geometric phase for the problem generalizing the free rigid
body phase formula. (See Bloch, Krishnaprasad, Marsden, and Sdnchez
[1992] and Bloch, Leonard, and Marsden [1997, 1998] for details.) One hopes
that this type of analysis will be useful in designing and understanding
attitude control devices.

Another example that combines some features of the satellite and the
heavy top is the underwater vehicle. This is in the realm of the dynamics
of rigid bodies in fluids, a subject going back to Kirchoff in the late 1800’s.
We refer to Leonard and Marsden [1997] and Holmes, Jenkins, and Leonard
[1998] for modern accounts and many references.

Miscellaneous Links. There are many continuum mechanical examples
to which the techniques of geometric mechanics apply. Some of those are
free boundary problems (Lewis, Marsden, Montgomery, and Ratiu [1986],
Montgomery, Marsden, and Ratiu [1984], Mazer and Ratiu [1989]), space-
craft with flexible attachments (Krishnaprasad and Marsden [1987]), elas-
ticity (Holm and Kupershmidt [1983], Kupershmidt and Ratiu [1983], Mars-
den, Ratiu, and Weinstein [1984a,b], Simo, Marsden, and Krishnaprasad
[1988]), and reduced MHD (Morrison and Hazeltine [1984] and Marsden
and Morrison [1984]). We also wish to look at these theories from both the
spatial (Eulerian) and body (convective) points of view as reductions of
the canonical material picture. These two reductions are, in an appropriate
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sense, dual to each other.
Reduction also finds use in a number of other diverse areas as well. We

mention just a few samples. Update
references

e Integrable systems (Moser [1980], Perelomov [1990], Adams, Harnad,
and Previato [1988], Fomenko and Trofimov [1989], Fomenko [1989],
Reyman and Semenov-Tian—Shansky [1990] and Moser and Veselov
[1990)).

e Applications of integrable systems to numerical analysis (like the QR
algorithm and sorting algorithms); see Deift and Li [1989] and Bloch,
Brockett, and Ratiu [1990, 1992].

e Numerical integration, (Calvo and Sanz-Serra [1994], Marsden, Patrick,
and Shadwick [1996], Wendlandt and Marsden [1977], Marsden, Patrick,
and Shkoller [1997])

e Hamiltonian chaos (Arnold [1964], Ziglin [1980a,b, 1981}, Holmes and
Marsden [1981, 1982a,b, 1983], Wiggins [1988]).

e Averaging (Cushman and Rod [1982], Iwai [1982, 1985], Ercolani,
Forest, McLaughlin, and Montgomery [1987]).

e Hamiltonian bifurcations (Van der Meer [1985], Golubitsky and Scha-
effer [1985], Golubitsky and Stewart [1987], Golubitsky, Stewart, and
Schaeffer [1988], Lewis, Marsden, and Ratiu [1987], Lewis, Ratiu,
Simo, and Marsden [1992], Montaldi, Roberts, and Stewart [1988],
Golubitsky, Marsden, Stewart, and Dellnitz [1994]).

e Algebraic geometry (Atiyah [1982, 1983], Kirwan [1984, 1985, 1988]).
e Celestial mechanics (Deprit [1983], Meyer and Hall [1992]).

e Vortex dynamics (Ziglin [1980b], Koiller, Soares, and Melo Neto [1985],
Wan and Pulvirente [1984], Wan [1986, 1988a,b,c|, Szeri and Holmes
[1988)).

e Solitons (Flaschka, Newell, and Ratiu [1983a,b], Newell [1985], Ko-
vacic and Wiggins [1992], McLaughlin, Overman, Wiggins, and Xion
[1993], Alber and Marsden [1992]). Xion?

check index
e Multisymplectic geometry, pde’s, and nonlinear waves (Gimmsy[1992], items---all 3

Bridges [1995,1996], Marsden and Shkoller [1997]). added

e Relativity and Yang-Mills theory (Fischer and Marsden [1972, 1979],
Arms [1981], Arms, Marsden, and Moncrief [1981, 1982]).

e Fluid variational principles using Clebsch variables and “Lin con-
straints” (Seliger and Whitham [1968], Cendra and Marsden [1987],
Cendra, Ibort, and Marsden [1987]).
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e Control, satellite and underwater vehicle dynamics (Krishnaprasad
[1985], van der Shaft and Crouch [1987], Aeyels and Szafranski [1988],
Bloch, Krishnaprasad, Marsden and Sénchez [1992], Wang, Krish-
naprasad and Maddocks [1991], Leonard [1997], Leonard and Mars-
den [1997]), Bloch, Leonard, and Marsden [1998], and Holmes, Jenk-
ins, and Leonard [1998]).

e Nonholonomic systems (Naimark and Fufaev [1972], Koiller [1992],
Bates and Sniatycki [1993], Bloch, Krishnaprasad, Marsden and Mur-
ray [1994]).

Reduction is a natural historical culmination of the works of Liouville
(for integrals in involution) and of Jacobi (for angular momentum) for
reducing the phase space dimension in the presence of first integrals. It is
intimately connected with work on momentum maps and its forerunners
appear already in Jacobi [1866], Lie [1890], Cartan [1922], and Whittaker
[1927]. Tt was developed later in Kirillov [1962], Arnold [1966a], Kostant
[1970], Souriau [1970], Smale [1970], Nekhoroshev [1977], Meyer [1973], and
Marsden and Weinstein [1974]. See also Guillemin and Sternberg [1984] and
Marsden and Ratiu [1986] for the Poisson case and Sjamaar and Lerman
[1991] for the singular symplectic case.
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