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15
The Free Rigid Body

As an application of the theory developed so far, we discuss the motion
of a free rigid body about a fixed point. We begin with a discussion of
the kinematics of rigid body motion. Our description of the kinematics of
rigid bodies follows some of the notations and conventions of continuum
mechanics, as in Marsden and Hughes [1983].

15.1 Material, Spatial, and Body
Coordinates

Consider a rigid body, free to move in R3. A reference configuration B of
the body is the closure of an open set in R3 with a piecewise smooth bound-
ary. Points in B, denoted X = (X1, X2, X3) ∈ B relative to an orthonormal
basis (E1,E2,E3) are called material points and Xi, i = 1, 2, 3, are called
material coordinates. A configuration of B is a mapping ϕ : B → R3

which is, for our purposes, C1, orientation preserving, and invertible on its
image. Points in the image of ϕ are called spatial points and denoted by
lowercase letters. Let (e1, e2, e3) be a right-handed orthonormal basis of
R3. Coordinates for spatial points, such as x = (x1, x2, x3) ∈ R3, i = 1, 2, 3,
relative to the basis (e1, e2, e3) are called spatial coordinates. Dually, one
can consider material quantities such as maps defined on B, say Z : B → R.
Then we can form spatial quantities by composition: zt = Zt ◦ϕ−1

t . Spatial
quantities are also called Eulerian quantities and material quantities are
often called Lagrangian quantities.
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A motion of B is a time-dependent family of configurations, written x =
ϕ(X, t) = ϕt(X) or simply x(X, t) or xt(X). Spatial quantities are functions
of x, and are typically written as lowercase letters. By composition with
ϕt, spatial quantities become functions of the material points X.

Rigidity of the body means that the distances between points of the
body are fixed as the body moves. We shall assume that no external forces
act on the body and that the center of mass is fixed at the origin (see
Exercise 15.1-1). Since any isometry of R3 that leaves the origin fixed is a
rotation (a 1932 theorem of Mazur and Ulam), we can write

x(X, t) = R(t)X, i.e., xi = Ri
j(t)X

j , i, j = 1, 2, 3, sum on j,

where xi are the components of x relative to the basis e1, e2, e3 fixed in
space, and [Ri

j ] is the matrix of R relative to the basis (E1,E2,E3) and
(e1, e2, e3). The motion is assumed to be continuous and R(0) is the iden-
tity, so det(R(t)) = 1 and thus R(t) ∈ SO(3), the proper orthogonal group.
Thus, the configuration space for the rotational motion of a rigid body may
be identified with SO(3). Consequently, the velocity phase space of the free
rigid body is T SO(3) and the momentum phase space is the cotangent bun-
dle T ∗ SO(3). Euler angles, discussed shortly, are the traditional way to
parametrize SO(3).

In addition to the material and spatial coordinates, there is a third set,
the convected or body coordinates. These are the coordinates associated with
the moving basis, and the description of the rigid body motion in these
coordinates, due to Euler, becomes very simple. As before, let E1,E2,E3

be an orthonormal basis fixed in the reference configuration. Let the time-
dependent basis ξ1, ξ2, ξ3 be defined by ξi = R(t)Ei, i = 1, 2, 3, so ξ1, ξ2, ξ3

move attached to the body. The body coordinates of a vector in R3 are
its components relative to ξi. For the rigid body anchored at the origin and
rotating in space, (e1, e2, e3) is thought of as a basis fixed in space, whereas
(ξ1, ξ2, ξ3) is a basis fixed in the body and moving with it. For this reason
(e1, e2, e3) is called the spatial coordinate system and (ξ1, ξ2, ξ3) the
body coordinate system.

Exercises

¦ Exercise 15.1-1. Start with SE(3) as the configuration space for the
rigid body and “reduce out” (see §10.7, the Euler–Poincaré, and Lie–
Poisson reduction theorems) translations to arrive at SO(3) as the con-
figuration space.

15.2 The Lagrangian of the Free Rigid Body

If X ∈ B is a material point of the body, the corresponding trajectory
followed by X in space is x(t) = R(t)X, where R(t) ∈ SO(3). The material
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or Lagrangian velocity V (X, t) is defined by

V (X, t) =
∂x(X, t)

∂t
= Ṙ(t)X, (15.2.1)

while the spatial or Eulerian velocity v(x, t) is defined by

v(x, t) = V (X, t) = Ṙ(t)R(t)−1x, (15.2.2)

and the body or convective velocity V(X, t) is defined by taking the
velocity regarding X as time-dependent and x fixed, that is, X(x, t) =
R(t)−1x:

V(X, t) = −∂X(x, t)
∂t

= R(t)−1Ṙ(t)R(t)−1x

= R(t)−1Ṙ(t)X

= R(t)−1V (X, t)

= R(t)−1v(x, t). (15.2.3)

Assume that the mass distribution of the body is described by a com-
pactly supported density measure ρ0d

3X in the reference configuration,
which is zero at points outside the body. The Lagrangian, taken to be the ki-
netic energy, is given by any of the following expressions that are related to
one another by a change of variables and the identities ‖V‖ = ‖V ‖ = ‖v‖ :

L =
1
2

∫
B

ρ0(X)‖V (X, t)‖2 d3X (material) (15.2.4)

=
1
2

∫
R(t)B

ρ0(R(t)−1x)‖v(x, t)‖2 d3x (spatial) (15.2.5)

=
1
2

∫
B

ρ0(X)‖V(X, t)‖2 d3X (convective or body). (15.2.6)

Differentiating R(t)TR(t) = Identity and R(t)R(t)T = Identity with re-
spect to t, it follows that both R(t)−1Ṙ(t) and Ṙ(t)R(t)−1 are skew-
symmetric. Moreover, by (15.2.2), (15.2.3), and the classical definition
v = ω × r = ω̂r of angular velocity, it follows that the vectors ω(t) and
Ω(t) in R3 defined by

ω̂(t) = Ṙ(t)R(t)−1 (15.2.7)

and

Ω̂(t) = R(t)−1Ṙ(t) (15.2.8)

represent the spatial and convective angular velocities of the body.
Note that ω(t) = R(t)Ω(t), or as matrices,

ω̂ = AdR Ω̂ = RΩ̂R−1.
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Let us show that L : T SO(3)→ R given by (15.2.4) is left-invariant. In-
deed, if B ∈ SO(3), left translation by B is LBR = BR and TLB(R, Ṙ) =
(BR,BṘ), so

L(TLB(R, Ṙ)) =
1
2

∫
B

ρ0(X)‖BṘ(X)‖2 d3X

=
1
2

∫
B

ρ0(X)‖Ṙ(X)‖2 d3X = L(R, Ṙ) (15.2.9)

since R is orthogonal.
By Lie–Poisson reduction of dynamics (Chapter 13), the corresponding

Hamiltonian system on T ∗ SO(3), which is necessarily also left invariant,
induces a Lie–Poisson system on so(3)∗ and this system leaves invariant
the coadjoint orbits ‖Π‖ = constant. Alternatively, by Euler–Poincaré re-
duction of dynamics, we get a system of equations in terms of body angular
velocity on so(3).

Reconstruction of the dynamics on T SO(3) is simply this: given Ω̂(t),
determine R(t) ∈ SO(3) from (15.2.8):

Ṙ(t) = R(t)Ω̂(t), (15.2.10)

which is a time-dependent linear equation for R(t).

15.3 The Lagrangian and Hamiltonian for
the Rigid Body in Body
Representation

From (15.2.6), (15.2.3), and (15.2.8) of the previous section, the rigid body
Lagrangian is

L =
1
2

∫
B

ρ0(X)‖Ω×X‖2 d3X. (15.3.1)

Introducing the new inner product

〈〈a,b〉〉 :=
∫
B

ρ0(X)(a×X) · (b×X) d3X,

which is determined by the density ρ0(X) of the body, (15.3.1) becomes

L(Ω) =
1
2
〈〈Ω,Ω〉〉. (15.3.2)

Define the linear isomorphism l : R3 → R3 by la · b = 〈〈a,b〉〉 for all
a,b ∈ R3; this is possible and uniquely determines l, since both the dot
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product and 〈〈 , 〉〉 are nondegenerate bilinear forms (assuming the rigid
body is not concentrated on a line). It is clear that l is symmetric with
respect to the dot product and is positive-definite. Let (E1,E2,E3) be an
orthonormal basis for material coordinates. The matrix of l is

lij = Ei · lEj = 〈〈Ei,Ej〉〉 =


−
∫
B
ρ0(X)XiXj d3X, i 6= j,∫

B
ρ0(X)(‖X‖2 − (Xi)2) d3X, i = j,

which are the classical expressions of the matrix of the inertia tensor .
Since l is symmetric, it can be diagonalized; an orthonormal basis in which
it is diagonal is a principal axis body frame and the diagonal elements
I1, I2, I3 are the principal moments of inertia of the rigid body. In what
follows we work in a principal axis reference and body frame, (E1,E2,E3).

Since so(3)∗ and R3 are identified by the dot product (not by 〈〈 , 〉〉), the
linear functional 〈〈Ω, · 〉〉—the Legendre transformation of Ω—on so(3) ∼=
R3 is identified with lΩ := Π ∈ so(3)∗ ∼= R3 because Π ·a = 〈〈Ω,a〉〉 for all
a ∈ R3. With l = diag(I1, I2, I3), (15.3.2) defines a function

K(Π) =
1
2

(
Π2

1

I1
+

Π2
2

I2
+

Π2
3

I3

)
(15.3.3)

that represents the expression for the kinetic energy on so(3)∗; note that
Π = lΩ is the angular momentum in the body frame . Indeed, for any
a ∈ R3, the identity (X× (Ω×X)) ·a = (Ω×X) · (a×X) and the classical
expression of the angular momentum in the body frame, namely,∫

B
(X × V)ρ0(X) d3X (15.3.4)

gives (∫
B
(X × V)ρ0(X) d3X

)
· a =

∫
B
(X × (Ω×X)) · aρ0(X) d3X

=
∫
B
(Ω×X) · (a×X)ρ0(X) d3X

= 〈〈Ω,a〉〉 = lΩ · a = Π · a,

that is, the expression (15.3.4) equals Π.
The angular momentum in space has the expression

π =
∫

R(B)

(x× v)ρ(x) d3x, (15.3.5)
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where ρ(x) = ρ0(X) is the spatial mass density and v = ω × x is the
spatial velocity (see (15.2.2) and (15.2.7)). For any a ∈ R3,

π · a =
∫

R(B)

(x× (ω × x)) · aρ(x) d3X

=
∫

R(B)

(ω × x) · (a× x)ρ(x) d3X. (15.3.6)

Changing variables x = RX, (15.3.6) becomes∫
B
(ω ×RX) · (a×RX)ρ0(X) d3X

=
∫
B
(RTω ×X) · (RTa×X)ρ0(X) d3X

= 〈〈Ω,RTa〉〉 = Π ·RTa = RΠ · a,

that is,

π = RΠ. (15.3.7)

Since L given by (15.3.2) is left invariant on T SO(3), the function K
defined on so(3)∗ by (15.3.3) defines the Lie–Poisson equations of motion
on so(3)∗ relative to the bracket

{F, H}(Π) = −Π · (∇F (Π)×∇H(Π)). (15.3.8)

Since ∇K(Π) = l−1Π, we get from (15.3.8) the rigid body equations

Π̇ = −∇K(Π)×Π = Π× l−1Π, (15.3.9)

that is, they are the standard Euler equations:

Π̇1 =
I2 − I3

I2I3
Π2Π3,

Π̇2 =
I3 − I1

I1I3
Π1Π3, (15.3.10)

Π̇3 =
I1 − I2

I1I2
Π1Π2.

The fact that these equations preserve coadjoint orbits amounts, in this
case, to the easily verified fact that

Π2 := ‖Π‖2 (15.3.11)

is a constant of the motion. In terms of coadjoint orbits, these equations
are Hamiltonian on each sphere in R3 with Hamiltonian function K. The
functions

CΦ(Π) = Φ
(

1
2
‖Π‖2

)
, (15.3.12)
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for any Φ : R→ R, are easily seen to be Casimir functions.
The conserved momentum resulting from left invariance is the spatial

angular momentum :

π = RΠ. (15.3.13)

Using left invariance, or a direct calculation, one finds that π is constant
in time. Indeed,

π̇ = (RΠ)̇ = ṘΠ + RΠ̇ = ω ×RΠ + RΠ̇

= RΩ×RΠ + RΠ̇ = R(−Π× l−1Π + Π̇) = 0.

The flow lines are given by intersecting the ellipsoids K = constant with
the coadjoint orbits which are two-spheres. For distinct moments of inertia
I1 > I2 > I3, the flow on the sphere has saddle points at (0,±Π, 0) and cen-
ters at (±Π, 0, 0), (0, 0,±Π). The saddles are connected by four heteroclinic
orbits, as indicated in Figure 15.3.1.

Π3

Π2
Π1

Figure 15.3.1. Rigid body flow on the angular momentum spheres.

In §15.10 we prove:

Theorem 15.3.1 (Rigid Body Stability Theorem). In the motion of
a free rigid body, rotation around the long and short axes are (Liapunov)
stable and rotation about the middle axis is unstable.

Even though we completely solved the rigid body equations in body
representation, the actual configuration of the body, that is, its attitude in
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470 15.4 Kinematics on Lie Groups

space, has not been determined yet. This will be done in §15.8. Also, one
has to be careful about the meaning of stability in space versus material
versus body representation.

Euler’s equations are very general. The n-dimensional case has been
treated by Mishchenko and Fomenko [1976, 1978a], Adler and van Mo-
erbeke [1980a,b], and Ratiu [1980, 1981, 1982] in connection with Lie al-
gebras and algebraic geometry. The Russian school has generalized these
equations further to a large class of Lie algebras and proved their complete
integrability in a long series of papers starting in 1978; see the treatise of
Fomenko and Trofimov [1989] and references therein.

15.4 Kinematics on Lie Groups

We now generalize the notation used for the rigid body to any Lie group.
This abstraction unifies ideas common to rigid bodies, fluids, and plasmas
in a consistent way. If G is a Lie group, and H : T ∗G→ R is a Hamiltonian,
we say it is described in the material picture . If α ∈ T ∗gG, its spatial
representation is defined by

αS = T ∗e Rg(α), (15.4.1)

while its body representation is

αB = T ∗e Lg(α). (15.4.2)

Similar notation is used for TG; if V ∈ TgG, we get

V S = TgRg−1(V ) (15.4.3)

and

V B = TgLg−1(V ). (15.4.4)

Thus, we get body and space isomorphisms as follows:

(Body) G× g
∗ LeftTranslate
←−−−−−−−−− T ∗G

RightTranslate
−−−−−−−−−−→ G× g∗ (Space).

Thus,

αS = Ad∗g−1 αB (15.4.5)

and

V S = Adg ‘V B . (15.4.6)

Part of the general theory of Chapter 13 says that if H is left (respectively,
right) invariant on T ∗G, it induces a Lie–Poisson system on g∗− (respec-
tively, g∗+).

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 April 1998—17h20 . . . . . . . . . . . . . . . . . . . . . . . . . . .



15.5 Poinsot’s Theorem 471

Exercises

¦ Exercise 15.4-1. Cayley–Klein parameters Recall that the Lie algebras
of SO(3) and SU(2) are the same. Recall also that SU(2) acts symplecti-
cally on C2 by multiplication of (complex) matrices. Use this to produce a
momentum map J : C2 → su(2)∗ ∼= R3.

(i) Write down J explicitly.

(ii) Verify by hand that J is a Poisson map.

(iii) If H is the rigid body Hamiltonian, compute HCK = H ◦ J.

(iv) Write down Hamilton’s equations for HCK and discuss the collective
Hamiltonian theorem in this context.

(v) Find this material, and relate it to the present context in one of the
standard books (Whittaker, Pars, Hamel, or Goldstein, for example).

15.5 Poinsot’s Theorem

Recall from §15.3 that the spatial angular momentum vector π is constant
under the flow of the free rigid body. Also, if ω is the angular velocity in
space, then

ω · π = Ω ·Π = 2K (15.5.1)

is a constant. From this, it follows that ω moves in an (affine) plane perpen-
dicular to the fixed vector π, called the invariable plane . The distance
from the origin to this plane is 2K/‖π‖. The ellipsoid of inertia in the
body is defined by

E = {Ω ∈ R3 | Ω · lΩ = 2K}.

The ellipsoid of inertia in space is

R(E) = {u ∈ R3 | u ·RlR−1u = 2K},

where R = R(t) ∈ SO(3) denotes the configuration of the body at time t.

Theorem 15.5.1 (Poinsot’s Theorem). The moment of inertia ellip-
soid in space rolls without slipping on the invariable plane.

Proof. First, we determine the planes perpendicular to the fixed vec-
tor π and tangent to R(E). See Figure 15.5.1. At the point of tangency
u, the vector 2RlR−1u (the gradient of the expression defining R(E)) is
proportional to π, that is, there is an a ∈ R such that RlR−1u = aπ, or

u = aRl−1R−1π = aRl−1Π = aRΩ = aω
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472 15.5 Poinsot’s Theorem

by (15.3.7), the definition of Π, and the relation ω = RΩ. However, this
point u = aω must belong to R(E) so that using the same relations again,
we get

2K = a2ω ·RlR−1ω = a2Ω · lΩ = 2a2K,

whence a = ±1, that is, there are exactly two planes perpendicular to π
and tangent at ±ω to R(E).

Second, we show that the plane tangent to R(E) at ω is the invariable
plane. Indeed, since the equation of this plane is u·π = C for some constant
C and ω is in the plane, it follows that C = ω·π = 2K, that is, the equation
of the plane is u · π = 2K, which is the invariable plane.

Third, since the point of tangency is ω, which is the instantaneous axis
of rotation, its velocity is zero, that is, the rolling of the inertia ellipsoid
on the invariable plane takes place without slipping. ¥

Figure 15.5.1. The geometry of Poinsot’s theorem.

Exercises

¦ Exercise 15.5-1. Prove a generalization of Poinsot’s theorem to any Lie
algebra g as follows. Assume that l : g→ R is a quadratic Lagrangian; that
is, a map of the form

l(ξ) =
1
2
〈ξ, Aξ〉
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15.6 Euler Angles 473

where A : g→ g∗ is a (symmetric) isomorphism.
Define the energy ellipsoid with value E0 to be

E0 = {ξ ∈ g | l(ξ) = E0}.

If ξ(t) is a solution of the Euler–Poincaré equations and

g(t)−1ġ(t) = ξ(t),

with g(0) = e, call the set

Et = g(t)(E0)

the energy ellipsoid at time t. Let µ = Aξ be the body momentum
and

µs = Ad∗g−1 µ

the conserved spatial momentum. Define the invariable plane to be the
affine plane

I = ξ(0) + {ξ ∈ g | 〈µs, ξ〉 = 0},

where ξ(0) is the initial condition.

(a) Show that ξs(t) = Adg(t) ξ(t), the spatial velocity, lies in I for all t;
that is, I is invariant.

(b) Show that ξs(t) ∈ Et and that the surface Et is tangent to I at this
point.

(c) Show in a precise sense that Et rolls without slipping on the invariable
plane.

15.6 Euler Angles

In what follows, we adopt the conventions of Arnold [1989], Cabannes
[1962], Goldstein [1980], and Hamel [1949]; these are different from the
ones used by the British school (Whittaker [1927] and Pars [1965]).

Let (x1, x2, x3) and (χ1, χ2, χ3) denote the components of a vector writ-
ten in the basis (e1, e2, e3) and (ξ1, ξ2, ξ3), respectively. We pass from the
basis (e1, e2, e3) to the basis (ξ1, ξ2, ξ3) by means of three consecutive
counterclockwise rotations (see Figure 15.6.1). First rotate (e1, e2, e3) by
an angle ϕ around e3 and denote the resulting basis and coordinates by
(e′1, e

′
2, e
′
3) and (x′1, x

′
2, x
′
3), respectively. The new coordinates (x′1, x′2, x′3)
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x

y

z

3

1

2

φ ψ

θ

N

O

Figure 15.6.1. Euler angles.

are expressed in terms of the old coordinates (x1, x2, x3) of the same point
by  x′1

x′2

x′3

 =

 cos ϕ sin ϕ 0
− sin ϕ cos ϕ 0

0 0 1

 x1

x2

x3

 . (15.6.1)

Denote the change of basis matrix (15.6.1) in R3 by R1. Second, rotate
(e′1, e

′
2, e
′
3) by the angle θ around e′1 and denote the resulting basis and

coordinate system by (e′′1 , e′′2 , e′′3) and (x′′1, x′′2, x′′3), respectively. The new
coordinates (x′′1, x′′2, x′′3) are expressed in terms of the old coordinates
(x′1, x′2, x′3) by x′′1

x′′2

x′′3

 =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 x′1

x′2

x′3

 . (15.6.2)

Denote the change of basis matrix in (15.6.2) by R2. The e′1-axis, that is,
the intersection of the (e1, e2)-plane with the (e′′1 , e′′2)-plane is called the
line of nodes and is denoted by ON . Finally, rotate by the angle ψ around
e′′3 . The resulting basis is (ξ1, ξ2, ξ3) and the new coordinates (χ1, χ2, χ3)
are expressed in terms of the old coordinates (x′′1, x′′2, x′′3) by χ1

χ2

χ3

 =

 cos ψ sinψ 0
− sinψ cos ψ 0

0 0 1

 x′′1

x′′2

x′′3

 . (15.6.3)
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Let R3 denote the change of basis matrix in (15.6.3). The rotation R
sending (x1, x2, x3) to (χ1, χ2, χ3) is described by the matrix P = R3R2R1

given by cosψ cosϕ− cosθ sinϕ sinψ cosψ sinϕ + cosθ cosϕ sinψ sinθ sinψ
− sinψ cosϕ− cosθ sinϕ cosψ − sinψ sinϕ + cosθ cosϕ cosψ sinθ cosψ

sinθ sinϕ − sinθ cosϕ cosθ

 .

Thus, χ = Px; equivalently, since the same point is expressed in two ways
as
∑3
i=1 χiξi =

∑3
j=1 xiej , we get

3∑
j=1

xjej =
3∑
i=1

χiξi =
3∑
i=1

 3∑
j=1

Pijx
j

 ξi =
3∑
j=1

xj
3∑
i=1

Pijξi,

that is,

ej =
3∑
i=1

Pijξi, (15.6.4)

and hence P is the change of basis matrix between the rotated basis
(ξ1, ξ2, ξ3), and the fixed spatial basis (e1, e2, e3). On the other hand,
(15.6.4) represents the matrix expression of the rotation RT sending ξj
to ej , that is, the matrix [R]ξ of R in the basis (ξ1, ξ2, ξ3) is PT :

[R]ξ = PT , i.e., Rξi =
3∑
i=1

Pijξj . (15.6.5)

Consequently, the matrix [R]e of R in the basis (e1, e2, e3) is given by P :

[R]e = P, i.e., Rej =
3∑
i=1

Pijei. (15.6.6)

It is straightforward to check that if

0 ≤ ϕ < 2π, 0 ≤ ψ < 2π, 0 ≤ θ < π,

there is a bijective map between the (ϕ, ψ, θ) variables and SO(3). However,
this bijective map does not define a chart, since its differential vanishes, for
example, at ϕ = ψ = θ = 0. The differential is nonzero for

0 < ϕ < 2π, 0 < ψ < 2π, 0 < θ < π,

and on this domain, the Euler angles do form a chart.

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 April 1998—17h20 . . . . . . . . . . . . . . . . . . . . . . . . . . .



476 15.7 The Hamiltonian of the Free Rigid Body in the Material Description via Euler Angles

15.7 The Hamiltonian of the Free Rigid
Body in the Material Description via
Euler Angles

The Hamiltonian of the Free Rigid Body
To express the kinetic energy in terms of Euler angles, we choose the basis

E1,E2,E3 of R3 in the reference configuration to equal the basis (e1, e2, e3)
of R3 in the spatial coordinate system. Thus, the matrix representation of
R(t) in the basis ξ1, ξ2, ξ3 equals PT , where P is given by (15.6). In this
way, ω and Ω have the following expressions in the basis ξ1, ξ2, ξ3:

ω =

 θ̇ cos ϕ + ψ̇ sinϕ sin θ

θ̇ sinϕ− ψ̇ cos ϕ sin θ

ϕ̇ + ψ̇ cos θ

 , Ω =

 θ̇ cos ψ + ϕ̇ sinψ sin θ

−θ̇ sin ψ + ϕ̇ cos ψ sin θ

ϕ̇ cos θ + ψ̇

 .

(15.7.1)

By definition of Π, it follows that

Π =

 I1(ϕ̇ sin θ sinψ + θ̇ cos ψ)
I2(ϕ̇ sin θ cos ψ − θ̇ sin ψ)

I3(ϕ̇ cos θ + ψ̇)

 . (15.7.2)

This expresses Π in terms of coordinates on T (SO(3)). Since T (SO(3))
and T ∗(SO(3)) are to be identified by the metric defined as the left invari-
ant metric given at the identity by 〈〈 , 〉〉, the variables (pϕ, pψ, pθ) canoni-
cally conjugate to (ϕ, ψ.θ) are given by the Legendre transformation pϕ =
∂K/∂ϕ̇, pψ = ∂K/∂ψ̇, pθ = ∂K/∂θ̇, where the expression of the kinetic
energy on T (SO(3)) is obtained by plugging (15.7.2) into (15.3.3). We get

pϕ = I1(ϕ̇ sin θ sinψ + θ̇ cos ψ) sin θ sinψ

+ I2(ϕ̇ sin θ cos ϕ− θ̇ sinψ) sin θ cos ψ + I3(ϕ̇ cos θ + ψ̇) cos θ,

pψ = I3(ϕ̇ cos θ + ψ̇),

pθ = I1(ϕ̇ sin θ sinψ + θ̇ cos ψ) cos ψ

− I2(ϕ̇ sin θ cos ψ − θ̇ sinψ) sinψ, (15.7.3)

whence by (15.7.2)

Π =

 ((pϕ − pψ cos θ) sinψ + pθ sin θ cos ψ)/ sin θ
((pϕ − pψcosθ) cos ψ − pθ sin θ sin ψ)/ sin θ

pψ

 , (15.7.4)
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and so by (15.3.3) we get the coordinate expression of the kinetic energy
in the material picture to be

K(ϕ, ψ, θ, pϕ, pψ, pθ)

=
1
2

{
[(pϕ − pψ cos θ) sinψ + pθ sin θ cos ψ]2

I1 sin2 θ

+
[(pϕ − pψ cos θ) cos ψ − pθ sin θ sin ψ]2

I1 sin2 θ
+

p2
ψ

I3

}
. (15.7.5)

This expression for the kinetic energy has an invariant expression on the
cotangent bundle T ∗(SO(3)). In fact,

K(αR) =
1
2
〈〈Ω, Ω〉〉 =

1
4
Tr(lR−1ṘR−1Ṙ), (15.7.6)

where αR ∈ T ∗R(SO(3)) is defined by 〈α,Rv̂〉 = 〈〈Ω,v〉〉 for all v ∈ R3.
The equation of motion (15.3.9) can also be derived “by hand” without

appeal to Lie–Poisson or Euler–Poincaré reduction as follows. Hamilton’s
canonical equations

ϕ̇ =
∂K

∂pϕ
, ψ̇ =

∂K

∂pψ
, θ̇ =

∂K

∂pθ
,

ṗϕ = −∂K

∂ϕ
, ṗψ = −∂K

∂ψ
, ṗθ = −∂K

∂θ
,

in a chart given by the Euler angles, become after direct substitution and
a somewhat lengthy calculation,

Π̇ = Π×Ω.

For F, G : T ∗(SO(3))→ R, that is, F, G are functions of (ϕ, ψ, θ, pϕ, pψ, pθ)
in a chart given by Euler angles, the standard canonical Poisson bracket is

{F, G} =
∂F

∂ϕ

∂G

∂pϕ
− ∂F

∂pϕ

∂G

∂ϕ
+

∂F

∂ψ

∂G

∂pψ

− ∂F

∂pψ

∂G

∂ψ
+

∂F

∂θ

∂G

∂pθ
− ∂F

∂pθ

∂G

∂θ
. (15.7.7)

A computation shows that after the substitution (ϕ, ψ, θ, pϕ, pψ, pθ) 7→
(Π1,Π2,Π3), this becomes

{F, G}(Π) = −Π · (∇F (Π)×∇G(Π)) (15.7.8)

which is the (−) Lie–Poisson bracket. This provides a direct check on
the Lie–Poisson reduction theorem in Chapter 13. Thus (15.7.4) defines
a canonical map between Poisson manifolds. The apparently “miraculous”
groupings and cancellations of terms that occur in this calculation should
make the reader appreciate the general theory.
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Exercises

¦ Exercise 15.7-1. Verify that (15.7.8), namely,

{F, G}(Π) = −Π · (∇F (Π)×∇G(Π))

holds by a direct calculation using substitution and the chain rule.

15.8 The Analytical Solution of the Free
Rigid Body Problem

We now give the analytical solution of the Euler equations. These formulae
are useful when, for example, one is dealing with perturbations leading
chaos via the Poincaré-Melnikov method, as in Ziglin [1980a,b], Holmes
and Marsden [1983], and Koiller [1985]. For the last part of this section, the
reader is assumed to be familiar with Jacobi’s elementary elliptic functions;
see, for example, Lawden [1989]. Let us make the following simplifying
notations

a1 =
I2 − I3

I2I3
≥ 0, a2 =

I3 − I1

I1I3
≤ 0, and a3 =

I1 − I2

I1I2
≥ 0,

where we assume I1 ≥ I2 ≥ I3 > 0. Then Euler’s equations Π̇ = Π× l−1Π
can be written as

Π̇1 = a1Π2Π3,

Π̇2 = a2Π3Π1, (15.8.1)

Π̇3 = a3Π1Π2.

For the analysis that follows it is important to recall that the angular
momentum in space is fixed and that the instantaneous axis of rotation of
the body in body coordinates is given by the angular velocity vector Ω.

Case 1. I1 = I2 = I3. Then a1 = a2 = a3 = 0 and we conclude that
Π, and thus Ω are both constant. Hence the body rotates with constant
angular velocity about a fixed axis. In Figure 15.3.1, all points on the sphere
become fixed points.

Case 2. I1 = I2 > I3. Then a3 = 0 and a2 = −a1. Since a3 = 0 it follows
from (15.8.1) that Π3 = constant, and thus denoting λ = −a1Π3 we get
a2Π3 = λ. Thus, (15.8.1) become

Π̇1 + λΠ2 = 0,

Π̇2 − λΠ1 = 0,
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which has solution for initial data given at time t = 0 given by

Π1 = Π1(0) cos λt−Π2(0) sinλt,

Π2 = Π2(0) cos λt + Π1(0) sinλt.

These formulae say that the axis of symmetry OZ of the body rotates
relative to the body with angular velocity λ. It is straightforward to check
that OZ, Ω, and Π are in the same plane and that Π and Ω make constant
angles with OZ and thus among themselves. In addition, since I1 = I2, we
have

‖Ω‖2 =
Π2

1

I2
1

+
Π2

2

I2
2

+
Π2

3

I2
3

=
(

Π2
1

I1
+

Π2
2

I2
+

Π2
3

I3

)
1
I1
− Π2

3

I3

(
1
I1
− 1

I3

)
=

2K

I1
− a2Π2

3

I3
= constant.

Therefore, the corresponding spatial objects Oz (the symmetry axis of the
inertia ellipsoid in space), ω, and π enjoy the same properties and hence
the axis of rotation in the body (given by Ω) makes a constant angle with
the angular momentum vector that is fixed in space, and thus the axis of
rotation describes a right circular cone of constant angle in space. At the
same time, the axis of rotation in the body (given by Ω) makes a constant
angle with Oz, thus tracing a second cone in the body. See Figure 15.8.1.

Consequently, the motion can be described by the rolling of a cone of
constant angle in the body on a second cone of constant angle fixed in space.
Whether the cone in the body rolls outside or inside the cone in space is
determined by the sign of λ. Since Oz,ω, and π remain coplanar during the
motion, ω and Oz rotate about the fixed vector π with the same angular
velocity, namely, the component of ω along π in the decomposition of ω
relative to π and the Oz-axis. This angular velocity is called the angular
velocity of precession . Let e denote the unit vector along Oz and write
ω = απ + βe. Therefore,

2K = ω · π = α‖π‖2 + βe · π = α‖π‖2 + βΠ3,

Π3

I3
= Ω3 = ω · e = απ · e + β = αΠ3 + β,

and

β = −a2Π3,

so that α = 1/I1 and β = −a2Π3. Therefore, the angular velocity of pre-
cession equals ΠS/I1.

On the Π-sphere, the dynamics reduce to two fixed points surrounded by
oppositely oriented periodic lines of latitude and separated by an equator
of fixed points. A similar analysis applies if I1 > I2 = I3.
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π

π /I1

Oz = axis of symmetry
of inertia ellipsoid

Figure 15.8.1. The geometry for integrating Euler’s equations.

Case 3. I1 > I2 > I3. The two integrals of energy and angular momen-
tum

Π2
1

I1
+

Π2
2

I2
+

Π3
3

I3
= 2h = ab2, (15.8.2)

Π2
1 + Π2

2 + Π2
3 = ‖Π‖2 = a2b2, (15.8.3)

where a = ‖Π‖2/2h, b = 2h/‖Π‖ are positive constants, enable us to ex-
press Π1 and Π3 in terms of Π2 as

Π2
1 =

I1(I2 − I3)
I2(I1 − I3)

(α2 −Π2
2) (15.8.4)

and

Π2
3 =

I3(I1 − I2)
I2(I1 − I3)

(β2 −Π2
2), (15.8.5)

where α and β are positive constants given by

α2 =
aI2(a− I3)b2

I2 − I3
and β2 =

aI2(I1 − a)b2

I1 − I2
. (15.8.6)

By the definition of a, note that I1 ≥ a ≥ I3. The endpoints of the interval
[I1, I3] are easy to deal with. If a = I1, then Π2 = Π3 = 0 and the motion
is a steady rotation about the Π-axis with body angular velocity ±b. Sim-
ilarly, if a = I3, then Π1 = Π2 = 0. So we can assume that I1 > a > I3.
With these expressions, the square of (15.8.1) becomes

(Π̇2)2 = a1a3(α2 −Π2
2)(β

2 −Π2
2) (15.8.7)
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that is,

t =
∫ Π2

Π2(0)

du√
a1a3(α2 − u2)(β2 − u2)

(15.8.8)

which shows that Π2, and hence Π1,Π3 are elliptic functions of time.
In case the quartic under the square root has double roots, that is, α = β,

(15.8.8) can be integrated explicitly by means of elementary functions. By
(15.8.6) if follows that

β2 − α2 =
ab2I2(I1 − I3)(I2 − a)

(I1 − I2)(I2 − I3)
.

Thus α = β if and only if a = I2 which in turn forces α = β = ab = ‖Π‖
and ‖Π‖2 = 2hI2. Thus (15.8.7) becomes

(Π̇2)2 = a1a3(‖Π‖2 −Π2
2)

2. (15.8.9)

If ‖Π‖2 = 2hI2 is satisfied, the intersection of the sphere of constant an-
gular momentum ‖Π‖ with the elliptical energy surface corresponding to
the value 2h consists of two great circles on the sphere going through the
Π2-axis in the planes

Π3 = ±Π1

√
a3

a1
.

In other words, the solution of (15.8.9) consists of four heteroclinic orbits
and the values Π2 = ±‖Π‖. Equation (15.8.9) is solved by putting Π2 =
‖Π‖ tanh θ. Setting Π2(0) = 0 for simplicity we get the four heteroclinic
orbits

Π+
1 (t) = ±‖Π‖

√
a1

−a2
sech(−√a1a3 ‖Π‖t),

Π+
2 (t) = ±‖Π‖tanh(−√a1a3 ‖Π ‖t), (15.8.10)

Π+
3 (t) = ±‖Π‖

√
a3

−a2
sech(−√a1a3 ‖Π‖t),

when

Π3 = Π1

√
a3

a1

and

Π−1 (t) = Π+
1 (−t), Π−2 (t) = Π+

2 (−t), Π−3 (t) = Π+
3 (−t),

when

Π3 = −Π1

√
a3

a1
.
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where does
this case
end

If α 6= β, then a 6= I2, and the integration is performed with the aid of
Jacobi’s elliptic functions (see Whittaker and Watson [1940], Chapter 22,
or Lawden [1989]). For example, the elliptic function snu with modulus k
is given by

sn u = u− 1
3!

(1 + k2)u3 +
1
5!

(1 + 14k2 + k4)u5 − . . .

and its inverse is

sn−1x =
∫ x

0

1√
(1− t2)(1− k2t2)

dt, 0 ≤ x ≤ 1.

Assuming I1 > I2 > a > I3 or, equivalently, α < β, the substitution of the
elliptic function Π2 = α sn u in (15.8.8) with the modulus

k = α/β =
[
(I1 − I2)(a− I3)
(I1 − a)(I2 − I3)

]1/2

,

gives u̇2 = ab2(I1 − a)(I2 − I3)/I1I2I3 = µ2. We will need the identities

cn2 u = 1− sn2 u, dn2 u = 1− k2 sn2 u, and
d

dx
sn x = cnxdnx.

With initial condition Π2(0) = 0, this gives

Π2 = α sn (µt). (15.8.11)

Thus Π2 varies between α and −α. Choosing the time direction appro-
priately, we can assume without loss of generality that Π̇2(0) > 0. Note
that Π1 vanishes when Π2 equals ±α by (15.8.4), but that Π2

3 attains its
maximal value

I3(I1 − I2)
I2(I1 − I3)

(β2 − α2) =
I3(I2 − a)ab2

(I2 − I3)
(15.8.12)

by (15.8.5). The minimal value of Π2
3 occurs when Π2 = 0, that is, it is

I3(I1 − I2)
I2(I1 − I3)

β2 =
I3(I1 − a)ab2

(I1 − I3)
=: δ2, (15.8.13)

again by (15.8.5). Thus the sign of Π3 is constant throughout the motion.
Let us assume it is positive. This hypothesis together with Π̇2(0) > 0 and
a2 < 0 imply that Π1(0) < 0.

Solving for Π1 and Π3 from (15.8.2) and (15.8.3) and remembering that
Π1(0) < 0 gives Π1(t) = −γ cn(µt),Π3(t) = δ dn(µt), where δ is given by
(15.8.13) and

γ2 =
I1(a− I3)ab2

(I1 − I3)
. (15.8.14)
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Note that β > α > γ and, as usual, the values of γ and δ are taken to be
positive. The solution of the Euler equations is therefore

Π1(t) = −γ cn(µt), Π2(t) = α sn(µt), Π3(t) = δ dn(µt), (15.8.15)

with α, γ, δ given by (15.8.6), (15.8.13), (15.8.14). If κ denotes the period
invariant of Jacobi’s elliptic functions then Π1 and Π2 have period 4κ/µ
whereas Π3 has period 2κ/µ.

Exercises

¦ Exercise 15.8-1. Continue this integration process and find formulas for
the attitude matrix A(t) as functions of time with A(0) = Identity and with
given body angular momentum (or velocity).

15.9 Rigid Body Stability

Following the energy-Casimir method step by step (see the Introduction),
we begin with the equations

Π̇ =
dΠ
dt

= Π×Ω, (15.9.1)

where Π,Ω ∈ R3,Ω is the angular velocity, and Π is the angular momen-
tum, both viewed in the body; the relation between Π and Ω is given by
Πj = IjΩj , j = 1, 2, 3, where I = (I1, I2, I3) is the diagonalized moment
of inertia tensor, I1, I2, I3 > 0. This system is Hamiltonian in the Lie–
Poisson structure of R3 given by (15.3.8) and relative to the kinetic energy
Hamiltonian

H(Π) =
1
2
Π ·Ω =

1
2

3∑
i=0

Π2
i

Ii
. (15.9.2)

Recall from (15.3.12) that for a smooth function Φ : R→ R,

CΦ(Π) = Φ
(

1
2
‖Π‖2

)
(15.9.3)

is a Casimir function.

1 First Variation. We find a Casimir function CΦ such that HCΦ := H+
CΦ has a critical point at a given equilibrium point of (15.9.1). Such points
occur when Π is parallel to Ω. We can assume without loss of generality,
that Π and Ω point in the Ox-direction. After normalizing if necessary, we
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484 15.9 Rigid Body Stability

can assume that the equilibrium solution is Πe = (1, 0, 0). The derivative
of

HCΦ(Π) =
1
2

3∑
i=0

Π2
i

Ii
+ Φ

(
1
2
‖Π‖2

)
is

DHCΦ(Π) · δΠ =
(
Ω + Φ′

(
1
2
‖Π‖2

)
Π
)
· δΠ. (15.9.4)

This equals zero at Πe = (1, 0, 0), provided that

Φ′
(

1
2

)
= − 1

I1
. (15.9.5)

2 Second Variation. Using (15.9.4), the second derivative of HCΦ at
the equilibrium Πe = (1, 0, 0) is

D2HCΦ(Πe) · (δΠ, δΠ)

= δΩ · δΠ + Φ′
(

1
2
‖Πe‖2

)
‖δΠ‖2 + (Πe · δΠ)2Φ′′

(
1
2
‖Πe‖2

)
=

3∑
i=0

(δΠi)2

Ii
− ‖δΠ‖

2

I1
+ Φ′′

(
1
2

)
(δΠ1)2

=
(

1
I2
− 1

I1

)
(δΠ2)2 +

(
1
I3
− 1

I1

)
(δΠ3)2 + Φ′′

(
1
2

)
(δΠ1)2.

(15.9.6)

3 Definiteness. This quadratic form is positive-definite if and only if

Φ′′
(

1
2

)
> 0 (15.9.7)

and

I1 > I2, I1 > I3. (15.9.8)

Consequently,

Φ(x) = − 1
I1

x +
(

x− 1
2

)2

satisfies (15.9.5) and makes the second derivative of HCΦ at (1, 0, 0) positive-
definite, so stationary rotation around the longest axis is (Liapunov) stable.

The quadratic form is negative-definite provided

Φ′′
(

1
2

)
< 0 (15.9.9)
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and

I1 < I2, I1 < I3. (15.9.10)

It is obvious that we may find a function Φ satisfying the requirements
(15.9.5) and (15.9.9); for example, Φ(x) = −(1/I1)x−

(
x− 1

2

)2. This proves
that rotation around the short axis is (Liapunov) stable.

Finally, the quadratic form (15.9.6) is indefinite if

I1 > I2, I3 > I1, (15.9.11)

or the other way around. We cannot show by this method that rotation
around the middle axis is unstable. We shall prove, by using a spectral
analysis, that rotation about the middle axis is, in fact, unstable. Lineariz-
ing (15.9.1) at Πe = (1, 0, 0) yields the linear constant coefficient system

(δΠ̇) = δΠ×Ωe + Πe × δΩ

=
(

0,
I3 − I1

I3I1
δΠ3,

I1 − I2

I1I2
δΠ2

)

=


0 0 0

0 0
I3 − I1

I3I1

0
I1 − I2

I1I2
0

 δΠ. (15.9.12)

On the tangent space at Πe to the sphere of radius ‖Πe‖ = 1, the linear
operator given by this linearized vector field has a matrix given by the
lower right (2× 2)-block whose eigenvalues are

± 1
I1

√
I2I3

√
(I1 − I2)(I3 − I1).

Both of them are real by (15.9.11) and one is strictly positive. Thus Πe is
spectrally unstable and thus is unstable.

We summarize the results in the following theorem.

Theorem 15.9.1 (Rigid Body Stability Theorem). In the motion of
a free rigid body, rotation around the long and short axes is (Liapunov) sta-
ble and around the middle axis is unstable.

It is important to keep the Casimir functions as general as possible,
because otherwise (15.9.5) and (15.9.9) could be contradictory. Had we
simply chosen

Φ(x) = − 1
I1

x +
(

x− 1
2

)2

,

(15.9.5) would be verified, but (15.9.9) would not. It is only the choice of
two different Casimirs that enables us to prove the two stability results,
even though the level surfaces of these Casimirs are the same.
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Remarks.

1. As we have seen, rotations about the intermediate axis are unstable
and this is even for the linearized equations. The unstable homoclinic orbit
that connect the two unstable points have interesting features. Not only are
they interesting because of the chaotic solutions via the Poincaré-Melnikov
method that can be obtained in various perturbed systems (see Holmes and
Marsden [1983], Wiggins [1988], and references therein), but already, the
orbit itself is interesting since a rigid body tossed about its middle axis will
undergo an interesting half twist when the opposite saddle point is reached,
even though the rotation axis has returned to where it was. The reader can
easily perform the experiment; see Ashbaugh, Chicone, and Cushman [1990]
and Montgomery [1991a] for more information.

2. The same stability theorem can also be proved by working with the
second derivative along a coadjoint orbit in R3; that is, a two-sphere; see
Arnold [1966a]. This coadjoint orbit method also suggests instability of
rotation around the intermediate axis.

3. Dynamic stability on the Π-sphere has been shown. What about the
stability of the dynamically rigid body we “see”? This can be deduced
from what we have done. Probably the best approach though is to use the
relation between the reduced and unreduced dynamics; see Simo, Lewis,
and Marsden [1991] and Lewis [1992] for more information.

4. When the body angular momentum undergoes a periodic motion, the
actual motion of the rigid body in space is not periodic. In the introduction
we described the associated geometric phase.

5. See Lewis and Simo [1990] and Simo, Lewis, and Marsden [1991] for
related work on deformable elastic bodies (pseudo-rigid bodies). ¨

Exercises

¦ Exercise 15.9-1. Let B be a given fixed vector in R3 and let M evolve
by Ṁ = M × B. Show that this evolution is Hamiltonian. Determine the
equilibria and their stability.

¦ Exercise 15.9-2. Consider the following modification of the Euler equa-
tions:

Π̇ = Π× Ω + αΠ× (Π× Ω),

where α is a positive constant. Show that,

(a) The spheres ‖Π‖2 are preserved.

(b) Energy is strictly decreasing except at equilibria.
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(c) The equations can be written in the form

Ḟ = {F, H}rb + {F, H}sym ,

where the first bracket is the usual rigid body bracket and the second
is the symmetric bracket

{F, K}sym = α(Π×∇F ) · (Π×∇K).

15.10 Heavy Top Stability

The heavy top equations are

dΠ
dt

= Π×Ω + MglΓ× χ, (15.10.1)

dΓ
dt

= Γ×Ω, (15.10.2)

where Π,Γ,χ ∈ R3. Here Π and Ω are the angular momentum and angular
velocity in the body, Πi = IiΩi, Ii > 0, i = 1, 2, 3, with I = (I1, I2, I3) the
moment of inertia tensor. The vector Γ represents the motion of the unit
vector along the Oz-axis as seen from the body, and the constant vector χ
is the unit vector along the line segment of length l connecting the fixed
point to the center mass of the body; M is the total mass of the body,
and g is the strength of the gravitational acceleration, which is along Oz
pointing down.

This system is Hamiltonian in the Lie–Poisson structure of R3×R3 given
in the Introduction relative to the heavy top Hamiltonian

H(Π,Γ) =
1
2
Π ·Ω + MglΓ · χ. (15.10.3)

The Poisson structure (with ‖T‖ = 1 imposed) foreshadows that of T ∗ SO(3)/S1,
where S1 acts by rotation about the axis of gravity. The fact that one gets
the Lie–Poisson bracket for a semi-direct product Lie algebra is a special
case of the general theory of reduction and semi-direct products (Marsden,
Ratiu and Weinstein [1984a,b])

The functions Π · Γ and ‖Γ‖2 are Casimir functions, as is

C(Π,Γ) = Φ(Π · Γ, ‖Γ‖2), (15.10.4)

where Φ is any smooth function from R2 to R.
We shall be concerned here with the Lagrange top. This is a heavy top

for which I1 = I2, that is, it is symmetric, and the center of mass lies on
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488 15.10 Heavy Top Stability

the axis of symmetry in the body, that is, χ = (0, 0, 1). This assumption
simplifies the equations of motion (15.10.1) to

Π̇1 =
I2 − I3

I2I3
Π2Π3 + MglΓ2,

Π̇2 =
I3 − I1

I1I3
Π1Π3 −MglΓ1,

Π̇3 =
I1 − I2

I1I2
Π1Π2.

Since I1 = I2, we have Π̇3 = 0; thus Π3 and hence any function ϕ(Π3) of
Π3 is conserved.

1 First Variation. We shall study the equilibrium solution

Πe = (0, 0,Π0
3), Γe = (0, 0, 1),

where Π0
3 6= 0, which represents the spinning of a symmetric top in its

upright position. To begin, we consider conserved quantities of the form
HΦ,ϕ = H + Φ(Π ·Γ, ‖Γ‖2) + ϕ(Π3) and which have a critical point at the
equilibrium. The first derivative of HΦ,ϕ is given by

DHΦ,ϕ(Π,Γ) · (δΠ, δΓ) = (Ω + Φ̇(Π · Γ, ‖Γ‖2)Γ) · δΠ
+ [Mglχ+ Φ̇(Π · Γ, ‖Γ‖2)Π

+ 2Φ′(Π · Γ, ‖Γ‖2)Γ] · δΓ + ϕ′(Π3)δΠ3,

where Φ̇ = ∂Φ/∂(Π ·Γ) and Φ′ = ∂Φ/∂(‖Γ‖2). At the equilibrium solution
(Πe,Γe) the first derivative of HΦ,ϕ vanishes, provided that

Π0
3

I3
+ Φ̇(Π0

3, 1) + ϕ′(Π0
3) = 0

and that

Mgl + Φ̇(Π0
3, 1)Π0

3 + 2Φ′(Π0
3, 1) = 0;

the remaining equations, involving indices 1 and 2, are trivially verified.
Solving for Φ̇(Π0

3, 1) and Φ′(Π0
3, 1) we get the conditions

Φ̇(Π0
3, 1) = −

(
1
I3

+
ϕ′(Π0

3)
Π0

3

)
Π0

3, (15.10.5)

Φ′(Π0
3, 1) =

1
2

(
1
I3

+
ϕ′(Π0

3)
Π0

3

)
(Π0

3)
2 − 1

2
Mgl. (15.10.6)
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2 Second Variation. We shall check for definiteness of the second vari-
ation of HΦ,ϕ at the equilibrium point (Πe,Γe). To simplify the notation
we shall set

a = ϕ′′(Π0
3), b = 4Φ′′(Π0

3, 1), c = Φ̈(Π0
3, 1), d = 2Φ̇′(Π0

3, 1).

With this notation, (15.10.5) and (15.10.6), we find that the matrix of the
second derivative at (Πe,Γe) is

1/I1 0 0 Φ̇(Π0
3, 1) 0 0

0 1/I1 0 0 Φ̇(Π0
3, 1) 0

0 0 (1/I3) + a + c 0 0 a36

Φ̇(Π0
3, 1) 0 0 2Φ′(Π0

3, 1) 0 0
0 Φ̇(Π0

3, 1) 0 0 2Φ′(Π0
3, 1) 0

0 0 a36 0 0 a66

 ,

(15.10.7)

where a36 = Φ̇(Π0
3, 1) + Π0

3c + d and a66 = 2Φ′(Π0
3, 1) + b + (Π0

3)
2c + Π0

3d.

3 Definiteness. The computations for this part will be done using the
following formula from linear algebra. If

M =
[

A B
C D

]
is a (p + q)× (p + q) matrix and if the (p× p)-matrix A is invertible, then

det M = detA det(D − CA−1B).

If the quadratric form given by (15.10.7) is definite, it must be positive-
definite since the (1, 1)-entry is positive. Recalling that I1 = I2, the six
principal determinants have the following values:(

2
I1

Φ′(Π0
3, 1)− Φ̇(Π0

3, 1)2

)2

(
Φ̇(Π0

3, 1) + Π0
3c + d

)2 (
2Φ′

(
Π0

3, 1
)

+ b +
(
Π0

3

)2
c + Π0

3d
)

.

Consequently, the quadratic form given by (15.10.7) is positive-definite, if
and only if

1
I3

+ a + c > 0, (15.10.8)

2
I1

Φ′(Π0
3, 1)− Φ̇(Π0

3, 1)2 > 0, (15.10.9)
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490 15.10 Heavy Top Stability

and

2Φ′(Π0
3, 1) + b + (Π0

3)
2c + Π0

3d > 0. (15.10.10)

Conditions (15.10.8) and (15.10.10) can always be satisfied if we choose
the numbers a, b, c, and d appropriately; for example, a = c = d = 0 and b
sufficiently large and positive. Thus, the determining condition for stability
is (15.10.9). By (15.10.5) and (15.10.6), this becomes

1
I1

[(
1
I3

+
ϕ′(Π0

3)
Π0

3

)
(Π0

3)
2 −Mgl

]
−
(

1
I3

+
ϕ′(Π0

3)
Π0

3

)2

(Π0
3)

2 > 0.

(15.10.11)

We can choose ϕ′(Π0
3) so that

1
I3

+
ϕ′(Π0

3)
Π0

3

= e

has any value we wish. The left side of (15.10.11) is a quadratic polynomial
in e, whose leading coefficient is negative. In order for this to be positive
for some e, it is necessary and sufficient for the discriminant

(Π0
3)

4

I2
1

− 4(Π0
3)

2Mgl

I1

to be positive; that is,

(Π0
3)

2 > 4MglI1

which is the classical stability condition for a fast top. We have proved the
first part of the following:

Theorem 15.10.1 (Heavy Top Stability Theorem). An upright spin-
ning Lagrange top is stable provided that the angular velocity is strictly
larger than 2

√
MglI1/I3. It is unstable if the angular velocity is smaller

than this value.

The second part of the theorem is proved, as in §15.9, by a spectral
analysis of the linearized equations, namely

(δΠ̇) = δΠ×Ω + Πe × δΩ + MglδΓ× χ, (15.10.12)

(δΓ̇) = δΓ×Ω + Γe × δΩ, (15.10.13)

on the tangent space to the coadjoint orbit in se(3)∗ through (Πe,Γe) given
by

{(δΠ, δΓ) ∈ R3 × R3 | δΠ · Γe + Πe · δΓ = 0 and δΓ · Γe = 0}
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15.10 Heavy Top Stability 491

∼= {(δΠ1, δΠ2, δΓ1, δΓ2)} = R4. (15.10.14)

The matrix of the linearized system of equations on this space is computed
to be 

0
Π0

3

I3

I1 − I3

I1
0 Mgl

−Π0
3

I3

I1 − I3

I1
0 −Mgl 0

0 − 1
I1

0
Π0

3

I3
1
I1

0 −Π0
3

I3
0


. (15.10.15)

The matrix (15.10.15) has characteristic polynomial

λ4 +
1
I2
1

[
(I2

1 + (I1 − I3)2)
(

Π0
3

I3

)2

− 2MglI1

]
λ2

+
1
I2
1

[
(I1 − I3)

(
Π0

3

I3

)2

+ Mgl

]2

, (15.10.16)

whose discriminant as a quadratic polynomial in λ2 is

1
I4
1

(2I1 − I3)2

(
Π0

3

I3

)2
(

I2
3

(
Π0

3

I3

)2

− 4MglI1

)
.

This discriminant is negative if and only if

Π0
3 < 2

√
MglI1.

Under this condition the four roots of the characteristic polynomial are all
distinct and equal to λ0, λ̄0,−λ0,−λ̄0 for some λ0 ∈ C, where Re λ0 6= 0
and Imλ0 6= 0. Thus, at least two of these roots have real part strictly
larger than zero thereby showing that (Πe,Γe) is spectrally unstable and
hence unstable.

When I2 = I1 + ε for small ε, the conserved quantity ϕ(Π3) is no longer
available. In this case, a sufficiently fast top is still linearly stable, and
nonlinear stability can be assessed by KAM theory. Other regions of phase
space are known to possess chaotic dynamics in this case (Holmes and
Marsden [1983]). For more information on stability and bifurcation in the
heavy top, we refer to Lewis, Ratiu, Simo, and Marsden [1992].

Exercises

¦ Exercise 15.10-1. (a) Show that H̃(Π,Γ) = H(Π,Γ)+‖Γ‖2/2, where
H is given by (15.10.3), generates the same equations of motion
(15.10.1) and (15.10.2).
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492 15.11 The Rigid Body and the Pendulum

(b) Taking the Legendre transform of H̃, show that the equations can be
written in Euler–Poincaré form.

15.11 The Rigid Body and the Pendulum

This section, following Holm and Marsden [1991], shows how the rigid body
and the pendulum are linked.

Euler’s equations are expressible in vector form as

d

dt
Π = ∇H ×∇L, (15.11.1)

where H is the energy,

H =
Π2

1

2I1
+

Π2
2

2I2
+

Π2
3

2I3
, (15.11.2)

∇H =
(

∂H

∂Π1
,

∂H

∂Π2
,

∂H

∂Π3

)
=
(

Π1

I1
,
Π2

I2
,
Π3

I3

)
, (15.11.3)

is the gradient of H and L is the square of the body angular momentum,

L =
1
2
(
Π2

1 + Π2
2 + Π2

3

)
. (15.11.4)

Since both H and L are conserved, the rigid body motion itself takes place,
as we know, along the intersections of the level surfaces of the energy (el-
lipsoids) and the angular momentum (spheres) in R3. The centers of the
energy ellipsoids and the angular momentum spheres coincide. This, along
with the (Z2)3 symmetry of the energy ellipsoids, implies that the two sets
of level surfaces in R3 develop collinear gradients (for example, tangencies)
at pairs of points which are diametrically opposite on an angular momen-
tum sphere. At these points, collinearity of the gradients of H and L implies
stationary rotations, that is, equilibria.

Euler’s equations for the rigid body may also be written as

d

dt
Π = ∇K ×∇N, (15.11.5)

where K and N are linear combinations of energy and angular momentum
of the form (

K
N

)
=
[

a b
c d

](
H
L

)
, (15.11.6)
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with real constants a, b, c, and d satisfying ad− bc = 1. Indeed, since

K =
1
2

(
a

I1
+ b

)
π2

1 +
1
2

(
a

I2
+ b

)
π2

3 +
1
2

(
a

I3
+ b

)
π2

3+

if I1 = I2 = I3, the choice a = −bI1 makes K = 0, that is, the diagonal
from of K is (0, 0, 0). If, I1 6= I2 = I3, the choice a = −bI2 yields

K =
b

2

(
1− I2

I1

)
Π2

1,

so the diagonal form of K is (∗, 0, 0). Finally, if I1 < I2 < I3, the choice

a = 1, b = − 1
I3

, c = − I1I3

I3 − I1
< 0, and d =

I3

I3 − I1
< 0 (15.11.7)

gives

K =
1
2

(
1
I1
− 1

I3

)
Π2

1 +
1
2

(
1
I2
− 1

I3

)
Π2

2 (15.11.8)

and

N =
I3(I2 − I1)
2I2(I3 − I1)

Π2
2 +

1
2
Π2

3. (15.11.9)

With this choice, the orbits for Euler’s equations for rigid body dynamics
are realized as motion along the intersections of two, orthogonally oriented,
elliptic cylinders, one elliptic cylinder being a level surface of K, with its
translation axis along Π3 (where K = 0 ), and the other a level surface of
N , with its translation axis along Π1 (where N = 0).

For a general choice of K and N , equilibria occur at points where the
gradients of K and N are collinear. This can occur at points where the
level sets are tangent (and the gradients both are nonzero), or at points
where one of the gradients vanishes. In the elliptic cylinder case above,
these two cases are points where the elliptic cylinders are tangent, and
at points where the axis of one cylinder punctures normally through the
surface of the other. The elliptic cylinders are tangent at one Z2-symmetric
pair of points along the Π2 axis, and the elliptic cylinders have normal axial
punctures at two other Z2-symmetric pairs of points along the Π1 and Π3

axes.
Let us pursue the elliptic cylinders point of view further. We now change

variables in the rigid body equations within a level surface of K. To sim-
plify notation, we first define the three positive constants k2

i , i = 1, 2, 3, by
setting

K =
Π2

1

2k2
1

+
Π2

2

2k2
2

and N =
Π2

2

2k2
3

+
1
2
Π2

3. (15.11.10)
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For

1
k2

1

=
1
I1
− 1

I3
,

1
k2

2

=
1
I2
− 1

I3
,

1
k2

3

=
I3(I2 − I1)
I2(I3 − I1)

. (15.11.11)

On the surface K = constant, and setting r =
√

2K = constant, define
new variables θ and p by

Π1 = k1r cos θ, Π2 = k2r sin θ, Π3 = p. (15.11.12)

In terms of these variables, the constants of the motion become

K =
1
2
r2 and N =

1
2
p2 +

(
k2

2

2k2
3

r2

)
sin2 θ. (15.11.13)

As we shall show below, using a Poisson structure relevant to the equations
of motion in the form d

dtΠ = ∇K ×∇N, the variables θ and p are, up to
a scale factor, canonically conjugate, that is, the Poisson bracket of two
functions of θ and p are given in standard canonical form (up to a scale
factor) as follows:

{F, G}EllipCyl =
1

k1k2

(
∂F

∂p

∂G

∂θ
− ∂F

∂θ

∂G

∂p

)
. (15.11.14)

In particular,

{p, θ}EllipCyl =
1

k1k2
. (15.11.15)

The quantity N is the Hamiltonian in these variables—note that N has the
form of kinetic plus potential energy—and the equations of motion express
themselves in Hamiltonian form in terms of the canonical Poisson bracket.
Namely,

d

dt
θ = {N, θ}EllipCyl =

1
k1k2

∂N

∂p
=

1
k1k2

p, (15.11.16)

d

dt
p = {N, p}EllipCyl =

−1
k1k2

∂N

∂θ
=
−1
k1k2

k2
2

k2
3

r2 sin θ cos θ. (15.11.17)

Combining these equations of motion gives

d2

dt2
θ =

−r2

2k2
1k2

3

sin 2θ, (15.11.18)

or, in terms of the original rigid body parameters,

d2

dt2
θ = −K

(
1
I1
− 1

I2

)
sin 2θ. (15.11.19)

Thus, we have proved
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Proposition 15.11.1. Rigid body motion reduces to pendulum motion
on level surfaces of K.

Another way of saying this is as follows: regard rigid body angular mo-
mentum space as the union of the level surfaces of K, so the dynamics of
the rigid body is recovered by looking at the dynamics on each of these
level surfaces. On each level surface, the dynamics is equivalent to a simple
pendulum. In this sense, we have proved:

Corollary 15.11.2. The dynamics of a rigid body in three-dimensional
body angular momentum space is a union of two-dimensional simple pen-
dula phase portraits.

By restricting to a nonzero level surface of K, the pair of rigid body
equilibria along the Π3 axis are excluded. (This pair of equilibria can be
included by permuting the indices of the moments of inertia.) The other
two pairs of equilibria, along the Π1 and Π2 axes, lie in the p = 0 plane at
θ = 0, π/2, π, and 3π/2. Since K is positive, the stability of each equilib-
rium point is determined by the relative sizes of the principal moments of
inertia, which affect the overall sign of the right-hand side of the pendulum
equation. The well-known results about stability of equilibrium rotations
along the least and greatest principal axes, and instability around the in-
termediate axis, are immediately recovered from this overall sign, combined
with the stability properties of the pendulum equilibria. For K > 0 and
I1 < I2 < I3, this overall sign is negative, so the equilibria at θ = 0 and π
(along the Π1 axis) are stable, while those at θ = π/2 and 3π/2 (along the
Π2 axis) are unstable. The factor of 2 in the argument of the sine in the
pendulum equation is explained by the Z2 symmetry of the level surfaces
of K (or, just as well, by their invariance under θ 7→ θ +π). Under this dis-
crete symmetry operation, the equilibria at θ = 0 and π/2 exchange with
their counterparts at θ = π and 3π/2, respectively, while the elliptical level
surface of K is left invariant. By construction, the Hamiltonian N in the
reduced variables θ and p is also invariant under this discrete symmetry.

Let us return to the derivation of the Poisson bracket (15.11.4) on the
level surface K = constant. Recall that the rigid body Poisson bracket on
two functions F1 and F2 of Π is given by the minus Lie–Poisson bracket
for so(3)∗:

{F1, F2} = −Π · (∇F1 ×∇F2). (15.11.20)

If Euler’s equations are rewritten as

d

dt
Π = ∇K ×∇N,

where K and N are given as above by an SL(2,R) matrix(
K
N

)
=
[

a b
c d

](
H
L

)
,

. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 April 1998—17h20 . . . . . . . . . . . . . . . . . . . . . . . . . . .



496 15.11 The Rigid Body and the Pendulum

one checks that the equations are Hamiltonian with energy N and the
Poisson bracket

{F1, F2}K = −∇K · (∇F1 ×∇F2). (15.11.21)

As we saw in Exercise 1.3-2, this defines a Poisson structure and K is a
Casimir function for this bracket. One can now directly verify the formula
{F, G}EllipCyl for the Poisson bracket on level sets of the function K in the
elliptic cylinder case by a straightforward calculation.

The rigid body can, correspondingly, be regarded as a left invariant sys-
tem on the group O(K) or SE(2). The special case of SE(2) is the one in
which the orbits are cotangent bundles. The fact that one gets a cotangent
bundle in this situation is a special case of the cotangent bundle reduction
theorem (Volume II) using the semidirect product reduction theorem; see
Marsden, Ratiu, and Weinstein [1984a,b]. For the Euclidean group it says
that the coadjoint orbits of the Euclidean group of the plane are given by
reducing the cotangent bundle of the rotation group of the plane by the
trivial group, giving the cotangent bundle of a circle with its canonical sym-
plectic structure up to a factor. This is the abstract explanation of why, in
the elliptic cylinder case above, the variables θ and p were, up to a factor,
canonically conjugate. This general theory is also consistent with the fact
that the Hamiltonian N is of the form kinetic plus potential energy. In fact,
in the cotangent bundle reduction theorem, one always gets a Hamiltonian
of this form, with the potential being changed by the addition of an amend-
ment to give the amended potential. In the case of the pendulum equation,
the original Hamiltonian is purely kinetic energy and so the potential term
in N , namely (k2

2r2/2k2
3) sin2 θ, is entirely amendment. See Volume II for

the general theory.
Putting the above discussion together with Exercises 14.9-1 and 14.9-2,

one gets

Theorem 15.11.3. Euler’s equations for a free rigid body are Lie–Poisson
with the Hamiltonian N for the Lie algebra R3

K where the underlying Lie
group is the orthogonal group of K if the quadratic form is nondegenerate,
and is the Euclidean group of the plane if K has signature (+,+, 0). In par-
ticular, all the groups SO(3),SO(2, 1), and SE(2) occur as the parameters
a, b, c, and d are varied. (If the body is a Lagrange body, then the Heisenberg
group occurs as well.)

The same richness of Hamiltonian structure was found in the Maxwell–
Bloch system in David and Holm [1992] (see also David, Holm, and Tratnick
[1990]). As in the case of the rigid body, the R3 motion for the Maxwell–
Bloch system may also be realized as motion along the intersections of
two orthogonally oriented cylinders. However, in this case, one cylinder
is parabolic in cross section, while the other is circular. Upon passing to
parabolic cylindrical coordinates, the Maxwell–Bloch system reduces to the
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ideal Duffing equation, while in circular cylindrical coordinates, the pendu-
lum equation results. The SL(2,R) matrix transformation in the Maxwell–
Bloch case provides a parametrized array of (offset) ellipsoids, hyperboloids,
and cylinders, along whose intersections the R3 motion takes place.

Exercises

¦ Exercise 15.11-1. Consider the Poisson bracket on R3 given by

{F1, F2}K(Π) = ∇K (Π) · (∇F1(Π)× (∇F2(Π))

with

K(Π) =
Π2

1

2k2
1

+
Π2

2

2k2
2

.

Verify that the Poisson bracket on the two-dimensional leaves given by
K = constant of this bracket has the expression

{θ, p}Ellip Cyl =
1

k1k2
,

where p = Π3 and θ = tan −1(K1Π2/k2Π1). What is the symplectic form
in these leaves?
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