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4
Interlude: Manifolds, Vector Fields,
and Differential Forms

In preparation for later chapters, it will be necessary for the reader to
learn a little bit about manifold theory. We recall a few basic facts here,
beginning with the finite-dimensional case. (See Abraham, Marsden, and
Ratiu [1988] for a full account.) The reader need not master all of this
material now, but it suffices to read through it for general sense and come
back to it repeatedly as our development of mechanics proceeds.

4.1 Manifolds

Coordinate Charts. Given a set M , a chart on M is an open set U in
Euclidean space Rn with coordinates (x1, . . . , xn) (more generally U can be
open in a Banach space) together with a one-to-one map ϕ : U → ϕ(U) ⊂
M of U onto some subset of M .

We call M a differentiable manifold if the following hold:

M1. It is covered by a collection of charts, that is, every point is repre-
sented in at least one chart.

M2. If two charts U,U ′ have an overlapping image in M , then

V = ϕ−1(ϕ(U) ∩ ϕ′(U ′)) and V ′ = (ϕ′)−1(ϕ(U) ∩ ϕ′(U ′))
are open sets in Rn. Hence the mapping ϕ′−1 ◦ ϕ : V → V ′ from an
open subset of Rn to a subset of Rn is defined (Figure 4.1.1). The
charts U,U ′ are called compatible if these n functions of n variables
ϕ′−1 ◦ ϕ are C∞.
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Figure 4.1.1. Overlapping charts on a manifold.

M3. M has an atlas; that is, M can be written as a union of compatible
charts.

Two atlases are called equivalent if their union is also an atlas. One
often rephrases the definition by saying that a differentiable structure on a
manifold is an equivalence class of atlases.

A neighborhood of a point x in a manifold M is the image under a
map ϕ : U → M of a neighborhood of the representation of x in a chart
U . Neighborhoods define open sets and one checks that the open sets in
M define a topology. Usually we assume without explicit mention that the
topology is Hausdorff : two different points x, x′ in M have nonintersecting
neighborhoods. A differentiable manifold M is called an n-manifold if
every chart has domain in an n-dimensional vector space.

Another useful viewpoint is to think of M as a set covered by a collection
of coordinate charts with local coordinates (x1, . . . , xn) with the property
that all mutual changes of coordinates are smooth maps.

Tangent Vectors. Two curves t 7→ c1(t) and t 7→ c2(t) in an n-manifold
M are called equivalent at x if

c1(0) = c2(0) = x and (ϕ−1 ◦ c1)′(0) = (ϕ−1 ◦ c2)′(0)
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4.1 Manifolds 121

in some chart ϕ. It is easy to check that this definition is chart independent.
A tangent vector v to a manifold M at a point x ∈M is an equivalence
class of curves at x. One proves that the set of tangent vectors to M at x
forms a vector space. It is denoted TxM and is called the tangent space
to M at x ∈M . Given a curve c(t), we denote by c′(s) the tangent vector
at c(s) defined by the equivalence class of t 7→ c(s+ t) at t = 0.

Let U be a chart of an atlas for the manifold M with coordinates
(x1, . . . , xn). The components of the tangent vector v to the curve t 7→
(ϕ−1 ◦ c)(t) are the numbers v1, . . . , vn defined by

vi =
d

dt
(ϕ−1 ◦ c)i

∣∣∣∣
t=0

,

where i = 1, . . . , n. The tangent bundle of M , denoted by TM , is the
differentiable manifold whose underlying set is the disjoint union of the
tangent spaces to M at the points x ∈M , that is,

TM =
⋃
x∈M

TxM.

Thus, a point of TM is a vector v that is tangent to M at some point x ∈
M . To define the differentiable structure on TM , we need to specify how
to construct local coordinates on TM . To do this, let x1, . . . , xn be local
coordinates on M and let v1, . . . , vn be components of a tangent vector in
this coordinate system. Then the 2n numbers x1, . . . , xn, v1, . . . , vn give a
local coordinate system on TM . Notice that dimTM = 2 dimM .

The natural projection is the map τM : TM →M that takes a tangent
vector v to the point x ∈ M at which the vector v is attached (that is,
v ∈ TxM). The inverse image τ−1

M (x) of a point x ∈ M under the natural
projection τM is the tangent space TxM . This space is called the fiber of
the tangent bundle over the point x ∈M .

Differentiable Maps. Let f : M → N be a map of a manifold M to a
manifold N . We call f differentiable (or Ck) if in local coordinates on M
and N it is given by differentiable (or Ck) functions. The derivative of a
differentiable map f : M → N at a point x ∈M is defined to be the linear
map

Txf : TxM → Tf(x)N

constructed in the following way. For v ∈ TxM , choose a curve c : ]−ε, ε[→
M with c(0) = x, and velocity vector dc/dt |t=0 = v . Then Txf · v is the
velocity vector at t = 0 of the curve f ◦ c : R→ N , that is,

Txf · v =
d

dt
f(c(t))

∣∣∣∣
t=0

.
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The vector Txf · v does not depend on the curve c but only on the vector
v. If M and N are manifolds and f : M → N is of class Cr+1, then
Tf : TM → TN is a mapping of class Cr. Note that

dc

dt

∣∣∣∣
t=0

= T0c · 1.

Vector Fields and Flows. A vector field X on a manifold M is a
map X : M → TM that assigns a vector X(x) at the point x ∈ M ; that
is, τM ◦ X = identity. An integral curve of X with initial condition x0

at t = 0 is a (differentiable) map c : ]a, b[→ M such that ]a, b[ is an open
interval containing 0, c(0) = x0 and

c′(t) = X(c(t))

for all t ∈ ]a, b[. In formal presentations we usually suppress the domain of
definition, even though this is technically important. The flow of X is the
collection of maps

ϕt : M →M

such that t 7→ ϕt(x) is the integral curve of X with initial condition x.
Existence and uniqueness theorems from ordinary differential equations
guarantee ϕ is smooth in x and t (where defined) if X is. From uniqueness,
we get the flow property

ϕt+s = ϕt ◦ ϕs

along with the initial conditions ϕ0 = identity. The flow property gener-
alizes the situation where M = V is a linear space, X(x) = Ax for a
(bounded) linear operator A, and where

ϕt(x) = etAx

to the nonlinear case.
A time dependent vector field is a map X : M ×R→ TM such that

X(x, t) ∈ TxM for each x ∈ M and t ∈ R. An integral curve of X is a
curve c(t) in M such that c′(t) = X(c(t), t). Now the flow is the collection
of maps

ϕt,s : M →M

such that t 7→ ϕt,s(x) is the integral curve c(t) such that c(s) = x. Again,
the existence and uniquness theorem from ODE theory applies and, in
particular, uniqueness gives the time dependent flow property :

ϕt,s ◦ ϕs,r = ϕt,r.

If X happens to be time independent, the two notions of flow are related
by ϕt,s = ϕt−s.
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Differentials and Covectors. If f : M → R is a smooth function,
we can differentiate it at any point x ∈ M to obtain a map Txf : TxM →
Tf(x)R. Identifying the tangent space of R at any point with itself (a process
we usually do in any vector space), we get a linear map df(x) : TxM → R.
That is, df(x) ∈ T ∗xM , the dual of the vector space TxM .

In coordinates, the directional derivatives defined by df(x) ·v, where
v ∈ TxM , are given by

df(x) · v =
n∑
i=1

∂f

∂xi
vi.

We will employ the summation convention and drop the summation
sign when there are repeated indices. We also call df the differential
of f .

One can show that specifying the directional derivatives completely de-
termines a vector, and so we can identify a basis of TxM using the operators
∂/∂xi. We write

(e1, . . . , en) =
(

∂

∂x1
, . . . ,

∂

∂xn

)
for this basis so that v = vi∂/∂xi.

If we replace each vector space TxM with its dual T ∗xM , we obtain a new
2n-manifold called the cotangent bundle and denoted T ∗M . The dual
basis to ∂/∂xi is denoted dxi. Thus, relative to a choice of local coordinates
we get the basic formula

df(x) =
∂f

∂xi
dxi

for any smooth function f : M → R.

Exercises

¦ Exercise 4.1-1. Show that the two-sphere S2 ⊂ R3 is a 2-manifold.

¦ Exercise 4.1-2. If ϕt : S2 → S2 rotates points on S2 about a fixed axis
through an angle t, show that ϕt is the flow of a certain vector field on S2.

¦ Exercise 4.1-3. Let f : S2 → R be defined by f(x, y, z) = z. Compute
df relative to spherical coordinates (θ, ϕ).

4.2 Differential Forms

We next review some of the basic definitions, properties, and operations on
differential forms, without proofs (see Abraham, Marsden, and Ratiu [1988]
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124 4.2 Differential Forms

and references therein). The main idea of differential forms is to provide
a generalization of the basic operations of vector calculus, div, grad, and
curl, and the integral theorems of Green, Gauss, and Stokes to manifolds
of arbitrary dimension.

Basic Definitions. A 2-form Ω on a manifold M is a function Ω(x) :
TxM × TxM → R that assigns to each point x ∈ M a skew-symmetric
bilinear form on the tangent space TxM to M at x. More generally, a k-
form α (sometimes called a differential form of degree k) on a manifold
M is a function α(x) : TxM × . . . × TxM (there are k factors) → R that
assigns to each point x ∈ M a skew-symmetric k-multilinear map on the
tangent space TxM to M at x. Without the skew-symmetry assumption,
α would be called a (0, k)-tensor . A map α : V × . . . × V (there are k
factors)→ R is multilinear when it is linear in each of its factors, that is,

α(v1, . . . , avj + bv′j , . . . , vk)

= aα(v1, . . . , vj , . . . , vk) + bα(v1, . . . , v
′
j , . . . , vk)

for all j with 1 ≤ j ≤ k. A k-multilinear map α : V × . . .× V → R is skew
(or alternating) when it changes sign whenever two of its arguments are
interchanged, that is, for all v1, . . . , vk ∈ V ,

α(v1, . . . , vi, . . . , vj , . . . , vk) = −α(v1, . . . , vj , . . . , vi, . . . , vk).

Let x1, . . . , xn denote coordinates on M , let

{e1, . . . , en} = {∂/∂x1, . . . , ∂/∂xn}

be the corresponding basis for TxM , and let {e1, . . . , en} = {dx1, . . . , dxn}
be the dual basis for T ∗xM . Then at each x ∈M , we can write a 2-form as

Ωx(v, w) = Ωij(x)viwj , where Ωij(x) = Ωx

(
∂

∂xi
,
∂

∂xj

)
,

and more generally a k-form can be written

αx(v1, . . . , vk) = αi1...ik(x)v
i1
1 . . . vikk ,

where there is a sum on i1, . . . , ik and where

αi1...ik(x) = αx

(
∂

∂xi1
, . . . ,

∂

∂xik

)
,

and where vi = vji ∂/∂x
j , with a sum on j.
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Tensor and Wedge Products. If α is a (0, k)-tensor on a manifold M ,
and β is a (0, l)-tensor, their tensor product α⊗ β is the (0, k+ l)-tensor
on M defined by

(α⊗ β)x(v1, . . . , vk+l) = αx(v1, . . . , vk)βx(vk+1, . . . , vk+l) (4.2.1)

at each point x ∈M .
If t is a (0, p)-tensor, define the alternation operator A acting on t by

A(t)(v1, . . . , vp) =
1
p!

∑
π∈Sp

sgn(π)t(vπ(1), . . . , vπ(p)), (4.2.2)

where sgn(π) is the sign of the permutation π:

sgn(π) =
{

+1 if π is even,
−1 if π is odd, (4.2.3)

and Sp is the group of all permutations of the numbers 1, 2, . . . , p. The
operator A therefore skew-symmetrizes p-multilinear maps.

If α is a k-form and β is an l-form on M , their wedge product α∧ β is
the (k + l)-form on M defined by1

α ∧ β =
(k + l)!
k! l!

A(α⊗ β). (4.2.4)

For example, if α and β are one-forms,

(α ∧ β)(v1, v2) = α(v1)β(v2)− α(v2)β(v1)

while if α is a 2-form and β is a 1-form,

(α ∧ β)(v1, v2, v3) = α(v1, v2)β(v3) + α(v3, v1)β(v2) + α(v2, v3)β(v1).

We state the following without proof:

Proposition 4.2.1. The wedge product has the following properties:

(i) α ∧ β is associative : α ∧ (β ∧ γ) = (α ∧ β) ∧ γ.

(ii) α ∧ β is bilinear in α, β :

(aα1 + bα2) ∧ β = a(α1 ∧ β) + b(α2 ∧ β),
α ∧ (cβ1 + dβ2) = c(α ∧ β1) + d(α ∧ β2).

1The numerical factor in (4.2.4) agrees with the convention of Abraham and Marsden
[1978], Abraham, Marsden, and Ratiu [1988], and Spivak [1976], but not that of Arnold
[1989], Guillemin and Pollack [1974], or Kobayashi and Nomizu [1963]; it is the Bourbaki
[1971] convention.
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(iii) α∧β is anticommutative : α∧β = (−1)klβ∧α, where α is a k-form
and β is an l-form.

In terms of the dual basis dxi, any k-form can be written locally as

α = αi1...ikdx
i1 ∧ · · · ∧ dxik

where the sum is over all ij satisfying i1 < · · · < ik.

Pull Back and Push Forward. Let ϕ : M → N be a C∞ map from
the manifold M to the manifold N and α be a k-form on N . Define the
pull back ϕ∗α of α by ϕ to be the k-form on M given by

(ϕ∗α)x(v1, . . . , vk) = αϕ(x)(Txϕ · v1, . . . , Txϕ · vk). (4.2.5)

If ϕ is a diffeomorphism, the push forward ϕ∗ is defined by ϕ∗ =
(ϕ−1)∗.

Here is another basic property.

Proposition 4.2.2. The pull back of a wedge product is the wedge product
of the pull backs:

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β. (4.2.6)

Interior Products and Exterior Derivatives. Let α be a k-form on a
manifold M and X a vector field. The interior product iXα (sometimes
called the contraction of X and α, and written X α) is defined by

(iXα)x(v2, . . . , vk) = αx(X(x), v2, . . . , vk). (4.2.7)

Proposition 4.2.3. Let α be a k-form and β an l-form on a manifold
M . Then

iX(α ∧ β) = (iXα) ∧ β + (−1)kα ∧ (iXβ). (4.2.8)

In the ‘hook’ notation, this reads

X (α ∧ β) = (X α) ∧ β + (−1)kα ∧ (X β).

The exterior derivative dα of a k-form α on a manifold M is the (k+1)-
form on M determined by the following proposition:

Proposition 4.2.4. There is a unique mapping d from k-forms on M to
(k + 1)-forms on M such that:

(i) If α is a 0- form (k = 0), that is, α = f ∈ C∞(M), then df is the
one-form which is the differential of f .

(ii) dα is linear in α, that is, for all real numbers c1 and c2,

d(c1α1 + c2α2) = c1dα1 + c2dα2.
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(iii) dα satisfies the product rule, that is,

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

where α is a k-form and, β is an l-form.

(iv) d2 = 0, that is, d(dα) = 0 for any k-form α.

(v) d is a local operator , that is, dα(x) only depends on α restricted
to any open neighborhood of x; in fact, if U is open in M , then

d(α|U) = (dα)|U.

If α is a k-form given in coordinates by

α = αi1...ikdx
i1 ∧ · · · ∧ dxik (sum on i1 < · · · < ik),

then the coordinate expression for the exterior derivative is

dα =
∂αi1...ik
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxik

(sum on all j and i1 < · · · < ik) (4.2.9)

Formula (4.2.9) can be taken as the definition of the exterior derivative,
provided one shows that (4.2.9) has the above-described properties and,
correspondingly, is independent of the choice of coordinates.

Next is a useful proposition that, in essence, rests on the chain rule:

Proposition 4.2.5. Exterior differentiation commutes with pull back, that
is,

d(ϕ∗α) = ϕ∗(dα), (4.2.10)

where α is a k-form on a manifold N and ϕ is a smooth map from a
manifold M to N .

A k-form α is called closed if dα = 0 and exact if there is a (k−1)-form
β such that α = dβ. By Proposition 4.2.4iv every exact form is closed.
Exercise 4.4-2 gives an example of a closed nonexact one-form.

Proposition 4.2.6 (Poincaré Lemma). A closed form is locally exact,
that is, if dα = 0 there is a neighborhood about each point on which α = dβ.

See Exercise 4.2-5 for the proof.

Vector Calculus. The table below entitled “Vector calculus and differ-
ential forms” summarizes how forms are related to the usual operations of
vector calculus. We now elaborate on a few items in this table. In item 4,
note that

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = (gradf)[ = (∇f)[
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which is equivalent to ∇f = (df)].
The Hodge star operator on R3 maps k-forms to (3 − k)-forms and is

uniquely determined by linearity and the properties in item 2. (This oper-
ator can be defined on general Riemannian manifolds; see Abraham, Mars-
den, and Ratiu [1988].)

In item 5, if we let F = F1e1+F2e2+F3e3, so F [ = F1 dx+F2 dy+F3 dz,
then,

d(F [) = dF1 ∧ dx+ F1d(dx) + dF2 ∧ dy + F2d(dy)
+ dF3 ∧ dz + F3d(dz)

=
(
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz

)
∧ dx

+
(
∂F2

∂x
dx+

∂F2

∂y
dy +

∂F2

∂z
dz

)
∧ dy

+
(
∂F3

∂x
dx+

∂F3

∂y
dy +

∂F3

∂z
dz

)
∧ dz

= −∂F1

∂y
dx ∧ dy +

∂F1

∂z
dz ∧ dx+

∂F2

∂x
dx ∧ dy − ∂F2

∂z
dy ∧ dz

− ∂F3

∂x
dz ∧ dx+

∂F3

∂y
dy ∧ dz

=
(
∂F2

∂x
− ∂F1

∂y

)
dx ∧ dy +

(
∂F1

∂z
− ∂F3

∂x

)
dz ∧ dx

+
(
∂F3

∂y
− ∂F2

∂z

)
dy ∧ dz.

Hence, using item 2,

∗(d(F [)) =
(
∂F2

∂x
− ∂F1

∂y

)
dz +

(
∂F1

∂z
− ∂F3

∂x

)
dy +

(
∂F3

∂y
− ∂F2

∂z

)
dx,

(∗(d(F [)))] =
(
∂F3

∂y
− ∂F2

∂z

)
e1 +

(
∂F1

∂z
− ∂F3

∂x

)
e2 +

(
∂F2

∂x
− ∂F1

∂y

)
e3

= curlF = ∇× F.

With reference to item 6, let F = F1e1 + F2e2 + F3e3, so

F [ = F1 dx+ F2 dy + F3 dz.
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Thus ∗(F [) = F1 dy ∧ dz + F2(−dx ∧ dz) + F3 dx ∧ dy, and so

d(∗(F [)) = dF1 ∧ dy ∧ dz − dF2 ∧ dx ∧ dz + dF3 ∧ dx ∧ dy

=
(
∂F1

∂x
dx+

∂F1

∂y
dy +

∂F1

∂z
dz

)
∧ dy ∧ dz

−
(
∂F2

∂x
dx+

∂F2

∂y
dy +

∂F2

∂z
dz

)
∧ dx ∧ dz

+
(
∂F3

∂x
dx+

∂F3

∂y
dy +

∂F3

∂z
dz

)
∧ dx ∧ dy

=
∂F1

∂x
dx ∧ dy ∧ dz +

∂F2

∂y
dx ∧ dy ∧ dz +

∂F3

∂z
dx ∧ dy ∧ dz

=
(
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z

)
dx ∧ dy ∧ dz = (div F ) dx ∧ dy ∧ dz.

Therefore, ∗(d(∗(F [))) = div F = ∇ · F .
The definition and properties of vector-valued forms are direct extensions

of these for usual forms on vector spaces and manifolds. One can think of
a vector-valued form as an array of usual forms (see Abraham, Marsden,
and Ratiu [1988]).

Vector Calculus and Differential Forms

1. Sharp and Flat (Using standard coordinates in R3)

(a) v[ = v1 dx+ v2 dy + v3 dz =
one-form corresponding to the vector

v = v1e1 + v2e2 + v3e3.

(b) α] = α1e1 + α2e2 + α3e3 =
vector corresponding to the one-form

α = α1 dx+ α2 dy + α3 dz.

2. Hodge Star Operator

(a) ∗1 = dx ∧ dy ∧ dz.
(b) ∗dx = dy ∧ dz, ∗dy = −dx ∧ dz, ∗dz = dx ∧ dy,
∗(dy ∧ dz) = dx, ∗(dx ∧ dz) = −dy, ∗(dx ∧ dy) = dz.

(c) ∗(dx ∧ dy ∧ dz) = 1.

3. Cross Product and Dot Product

(a) v × w = [∗(v[ ∧ w[)]].
(b) (v · w)dx ∧ dy ∧ dz = v[ ∧ ∗(w[).

. . . . . . . . . . . . . . . . . . . . . . . . . 15 January 1998—17h14 . . . . . . . . . . . . . . . . . . . . . . . . .
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4. Gradient ∇f = gradf = (df)].

5. Curl ∇× F = curlF = [∗(dF [)]].

6. Divergence ∇ · F = div F = ∗d(∗F [).

Exercises

¦ Exercise 4.2-1. Let ϕ : R3 → R2 be given by ϕ(x, y, z) = (x + z, xy).
For α = ev du+u dv ∈ Ω1(R2) and β = u du∧ dv compute α∧β, ϕ∗α, ϕ∗β,
and ϕ∗α ∧ ϕ∗β.

¦ Exercise 4.2-2. Given

α = y2 dx ∧ dz + sin(xy) dx ∧ dy + ex dy ∧ dz ∈ Ω2(R3)

and

X = 3∂/∂x+ cos z∂/∂y − x2∂/∂z ∈ X(R3),

compute dα and iXα.

¦ Exercise 4.2-3.

(a) Denote by Λk(Rn) the vector space of all skew-symmetric k-linear
maps on Rn. Prove that this space has dimension n!/k! (n − k)! by
showing that a basis is given by {ei1 ∧· · ·∧eik | i1 < . . . < ik}, where
{e1, . . . , en} is a basis of Rn and {e1, . . . , en} is its dual basis, that
is, ei(ej) = δij .

(b) If µ ∈ Λn(Rn) is nonzero, prove that the map v ∈ Rn 7→ ivµ ∈
Λn−1(Rn) is an isomorphism.

(c) If M is a smooth n-manifold and µ ∈ Ωn(M) is nowhere vanishing
(in which case it is called a volume form), show that the map X ∈
X(M) 7→ iXµ ∈ Ωn−1(M) is a module isomorphism over F(M).

¦ Exercise 4.2-4. Let α = αi dx
i be a closed one-form in a ball around

the origin in Rn. Show that α = df for

f(x1, . . . , xn) =
∫ 1

0

αj(tx1, . . . , txn)xj dt.

¦ Exercise 4.2-5.
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(a) Let U be an open ball around the origin in Rn and α ∈ Ωk(U) a
closed form. Verify that α = dβ, where

β(x1, . . . , xn)

=
(∫ 1

0

tk−1αji1...ik−1(tx
1, . . . , txn)xj dt

)
dxi1 ∧ . . . ∧ dxik−1 ,

and where the sum is over i1 < · · · < ik−1. Here, α = αj1...jk dx
j1 ∧

. . . ∧ dxjk , where j1 < · · · < jk and where α is extended to be skew-
symmetric in its lower indices.

(b) Deduce the Poincaré lemma from (a).

¦ Exercise 4.2-6. (Construction of a homotopy operator for a retraction.)
Let M be a smooth manifold and N ⊂M a smooth submanifold. A family
of smooth maps rt : M →M, t ∈ [0, 1], is called a retraction of M onto
N , if rt|N = identity on N for all t ∈ [0, 1], r1 = identity on M , rt is a
diffeomorphism of M with rt(M) for every t 6= 0, and r0(M) = N . Let Xt

be the time dependent vector field generated by rt, t 6= 0. Show that the
operator H : Ωk(M)→ Ωk−1(M) defined by

H =
∫ 1

0

(r∗t iXtα) dt

satisfies
α− (r∗0α) = dHα+ Hdα.

Deduce the relative Poincaré lemma from this formula: if α ∈ Ωk(M)
is closed and α|N = 0, then there is a neigborhood U of N such that
α|U = dβ, for some β ∈ Ωk−1(U) and β|N = 0. (Hint: Use the existence
of a tubular neigborhood of N in M .).

4.3 The Lie Derivative

Lie Derivative Theorem. The dynamic definition of the Lie derivative
is as follows. Let α be a k-form and let X be a vector field with flow ϕt.
The Lie derivative of α along X is given by

£Xα = lim
t→0

1
t
[(ϕ∗tα)− α] =

d

dt
ϕ∗tα

∣∣∣∣
t=0

. (4.3.1)

This definition together with properties of pull-backs yields the following.

Theorem 4.3.1 (Lie Derivative Theorem).

d

dt
ϕ∗tα = ϕ∗t£Xα. (4.3.2)
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132 4.3 The Lie Derivative

This formula holds also for time-dependent vector fields in the sense that

d

dt
ϕ∗t,sα = ϕ∗t,s£Xα

and in ΛαXα, the vector field is evaluated at time t.
If f is a real-valued function on a manifold M and X is a vector field on

M , the Lie derivative of f along X is the directional derivative

£Xf = X[f ] := df ·X. (4.3.3)

If M is finite-dimensional,

£Xf = Xi ∂f

∂xi
. (4.3.4)

For this reason one often writes

X = Xi ∂

∂xi
.

If Y is a vector field on a manifold N and ϕ : M → N is a diffeomorphism,
the pull back ϕ∗Y is a vector field on M defined by

(ϕ∗Y )(x) = Txϕ
−1 ◦ Y ◦ ϕ(x). (4.3.5)

Two vector fields X on M and Y on N are said to be ϕ-related if

Tϕ ◦X = Y ◦ ϕ. (4.3.6)

Clearly, if ϕ : M → N is a diffeomorphism and Y is a vector field on N ,
ϕ∗Y and Y are ϕ-related. For a diffeomorphism ϕ, the push forward is
defined, as for forms, by ϕ∗ = (ϕ−1)∗.

Jacobi–Lie Brackets. If M is finite dimensional and C∞ then the set of
vector fields on M coincides with the set of derivations on F(M). The same
result is true for Ck manifolds and vector fields if k ≥ 2. This property
is false for infinite-dimensional manifolds; see Abraham, Marsden, Ratiu
[1988]. If M is C∞ and smooth, then the derivation f 7→ X[Y [f ]]−Y [X[f ]],
where X[f ] = df ·X, determines a unique vector field denoted by [X,Y ]
and called the Jacobi–Lie bracket of X and Y . Defining £XY = [X,Y ]
gives the Lie derivative of Y along X. Then the Lie derivative theorem
(4.3.2) holds with α replaced by Y and the pull back operation given by
(4.3.5).

If M is infinite-dimensional, then one defines the Lie derivative of Y
along X by

d

dt

∣∣∣∣
t=0

ϕ∗tY = £XY, (4.3.7)
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where ϕt is the flow of X. Then formula (4.3.2) with α replaced by Y
holds and the action of the vector field £XY on a function f is given
by X[Y [f ]] − Y [X[f ]] which is denoted, as in the finite-dimensional case,
[X,Y ][f ]. As before [X,Y ] = £XY is also called the Jacobi–Lie bracket of
vector fields.

If M is finite-dimensional,

(£XY )j = Xi ∂Y
j

∂xi
− Y i ∂X

j

∂xi
= (X · ∇)Y i − (Y · ∇)Xj , (4.3.8)

and in general, where we identify X,Y with their local representatives

[X,Y ] = DY ·X −DX · Y. (4.3.9)

The formula for [X,Y ] = £XY can be remembered by writing[
Xi ∂

∂xi
, Y j

∂

∂xj

]
= Xi ∂Y

j

∂xi
∂

∂xj
− Y j ∂X

i

∂xj
∂

∂xi
.

Algebraic Definiton of the Lie Derivative. The algebraic approach
to the Lie derivative on forms or tensors proceeds as follows. Extend the
definition of the Lie derivative from functions and vector fields to differen-
tial forms, by requiring that the Lie derivative is a derivation; for example,
for one-forms α, write

£X〈α, Y 〉 = 〈£Xα, Y 〉+ 〈α,£XY 〉 , (4.3.10)

where X,Y are vector fields and 〈α, Y 〉 = α(Y ). More generally,

£X(α(Y1, . . . , Yk)) = (£Xα)(Y1, . . . , Yk) +
k∑
i=1

α(Y1, . . . ,£XYi, . . . , Yk),

(4.3.11)

where X,Y1, . . . , Yk are vector fields and α is a k-form.

Proposition 4.3.2. The dynamic and algebraic definitions of the Lie
derivative of a differential k-form are equivalent.

Cartan’s Magic Formula. A very important formula for the Lie deriva-
tive is given by the following.

Theorem 4.3.3. For X a vector field and α a k-form on a manifold M ,
we have

£Xα = diXα+ iXdα. (4.3.12)

This is proved by a lengthy but straightforward calculation.
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134 4.3 The Lie Derivative

Another property of the Lie derivative is the following: if ϕ : M → N is
a diffeomorphism,

ϕ∗£Y β = £ϕ∗Y ϕ
∗β

for Y ∈ X(N), β ∈ Ωk(M). More generally, if X ∈ X(M) and Y ∈ X(N)
are ψ related, that is, Tψ ◦X = Y ◦ψ for ψ : M → N a smooth map, then
£Xψ

∗β = ψ∗£Y β for all β ∈ Ωk(N).

Volume Forms and Divergence. An n-manifold M is said to be ori-
entable if there is a nowhere vanishing n-form µ on it; µ is called a volume
form and it is a basis of Ωn(M) over F(M). Two volume forms µ1 and µ2

onM are said to define the same orientation if there is an f ∈ F(M), with
f > 0 and such that µ2 = fµ1. Connected orientable manifolds admit pre-
cisely two orientations. A basis {v1, . . . vn} of TmM is said to be positively
oriented relative to the volume form µ onM if µ(m)(v1, . . . , vn) > 0. Note
that the volume forms defining the same orientation form a convex cone in
Ωn(M), that is, if a > 0 and µ is a volume form, then aµ is again a volume
form and if t ∈ [0, 1] and µ1, µ2 are volume forms, then tµ1 + (1 − t)µ2 is
again a volume form. The first property is obvious. To prove the second, let
m ∈ M and let {v1, . . . vn} be a positively oriented basis of TmM relative
to the orientation defined by µ1, or equivalently (by hypothesis) by µ2.
Then µ1(m)(v1, . . . , vn) > 0, µ2(m)(v1, . . . , vn) > 0 so that their convex
combination is again strictly positive.

If µ ∈ Ωn(M) is a volume form, since £Xµ ∈ Ωn(M) there is a function,
called the divergence of X relative to µ and denoted divµ(X) or simply
div(X), such that

£Xµ = divµ(X)µ. (4.3.13)

From the dynamic approach to Lie derivatives it follows that divµ(X) = 0
iff F ∗t µ = µ, where Ft is the flow of X. This condition says that Ft is
volume preserving . If ϕ : M → M , since ϕ∗µ ∈ Ωn(M) there is a
function, called the Jacobian of ϕ and denoted Jµ(ϕ) or simply J(ϕ),
such that

ϕ∗µ = Jµ(ϕ)µ. (4.3.14)

Thus, ϕ is volume preserving iff Jµ(ϕ) = 1. From the inverse function
theorem, we see that ϕ is a local diffeomorphism iff Jµ(ϕ) 6= 0 on M .

There are a number of valuable identities relating the Lie derivative, the
exterior derivative and the interior product. For example, if Θ is a one form
and X and Y are vector fields, identity 6 in the following table gives

dΘ(X,Y ) = X[Θ(Y )]− Y [Θ(X)]−Θ([X,Y ]). (4.3.15)
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Exercises

¦ Exercise 4.3-1. Let M be an n-manifold, µ ∈ Ωn(M) a volume form,
X,Y ∈ X(M), and f, g : M → R smooth functions such that f(m) 6= 0 for
all m. Prove the following identities:

(a) divfµ(X) = divµ(X) +X[f ]/f ;

(b) divµ(gX) = g divµ(X) +X[g]; and

(c) divµ([X,Y ]) = X[divµ(Y )]− Y [divµ(X)].

¦ Exercise 4.3-2. Show that the partial differential equation

∂f

∂t
=

n∑
i=1

Xi(x1, . . . , xn)
∂f

∂xi

with initial condition f(x, 0) = g(x) has the solution f(x, t) = g(Ft(x)),
where Ft is the flow of the vector field (X1, . . . , Xn) in Rn whose flow is
assumed to exist for all time. Show that the solution is unique. Generalize
this exercise to the equation

∂f

∂t
= X[f ]

for X a vector field on a manifold M .

¦ Exercise 4.3-3. Show that if M and N are orientable manifolds, so is
M ×N .

4.4 Stokes’ Theorem

The basic idea of the definition of the integral of an n-form µ on an oriented
n-manifold M is to pick a covering by coordinate charts and to sum up the
ordinary integrals of f(x1, . . . , xn) dx1 · · · dxn, where

µ = f(x1, . . . , xn) dx1 ∧ · · · ∧ dxn

is the local representative of µ, being careful not to count overlaps twice.
The change of variables formula guarantees that the result, denoted by∫
M
µ, is well defined.

If one has an oriented manifold with boundary, then the boundary, ∂M ,
inherits a compatible orientation. This proceeds in a way that generalizes
the relation between the orientation of a surface and its boundary in the
classical Stokes’ theorem in R3.

. . . . . . . . . . . . . . . . . . . . . . . . . 15 January 1998—17h14 . . . . . . . . . . . . . . . . . . . . . . . . .



136 4.4 Stokes’ Theorem

Theorem 4.4.1. (Stokes’ Theorem) Suppose that M is a compact,
oriented k-dimensional manifold with boundary ∂M . Let α be a smooth
(k − 1)-form on M . Then ∫

M

dα =
∫
∂M

α. (4.4.1)

Special cases of Stokes’ theorem are as follows:

The Integral Theorems of Calculus. Stokes’ theorem generalizes and
synthesizes the classical theorems:

(a) Fundamental Theorem of Calculus.∫ a

b

f ′(x) dx = f(b)− f(a). (4.4.2)

(b) Green’s Theorem. For a region Ω ⊂ R2:∫ ∫
Ω

(
∂Q

∂x
− ∂P

∂y

)
dx dy =

∫
∂Ω

P dx+Qdy. (4.4.3)

(c) Divergence Theorem. For a region Ω ⊂ R3:∫ ∫ ∫
Ω

div F dV =
∫ ∫

∂Ω

F · ndA. (4.4.4)

(d) Classical Stokes’ Theorem. For a surface S ⊂ R3:∫ ∫
S

{(
∂R

∂y
− ∂Q

∂z

)
dy ∧ dz

+
(
∂P

∂z
− ∂R

∂x

)
dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy

}
=
∫ ∫

S

n · curl F dA

=
∫
∂S

P dx+Qdy +Rdz, (4.4.5)

where F = (P,Q,R).

Notice that the Poincaré lemma generalizes the vector calculus theorems
in R3 saying that if curlF = 0, then F = ∇f and if div F = 0, then
F = ∇×G. Recall that it states: If α is closed, then locally α is exact; that
is, if dα = 0, then locally α = dβ for some β.
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4.4 Stokes’ Theorem 137

Cohomology. The failure of closed forms to be globally exact leads to
the study of a very important topological invariant of M , the de Rham
cohomology . The kth de Rham cohomology group, denoted Hk(M) is
defined by

Hk(M) :=
ker(d : Ωk(M)→ Ωk+1(M))

range (d : Ωk−1(M)→ Ωk(M))
.

The de Rham theorem states that these abelian groups are isomorphic to
the so-called singular cohomology groups ofM defined in algebraic topology
in terms of simplexes and that depend only on the topological structure of
M and not on its differentiable structure. The isomorphism is provided by
integration and the fact that the integration map drops to the preceding
quotient is guaranteed by Stokes’ theorem. A useful particular case of this
theorem is the following: if M is an orientable compact boundaryless n-
manifold, then

∫
M
µ = 0 if and only if the n-form µ is exact. This statement

is equivalent to Hn(M) = R.

Change of Variables. Another basic result in integration theory is the
global change of variables formula.

Theorem 4.4.2 (Change of Variables). Let M and N be oriented n-
manifolds and let F : M → N be an orientation-preserving diffeomorphism.
If α is an n-form on N (with, say, compact support), then∫

M

F ∗α =
∫
N

α.

Frobenius’ Theorem. We also mention a basic result called Frobenius’
theorem . If E ⊂ TM is a vector subbundle, it is said to be involutive if
for any two vector fields X,Y on M with values in E, [X,Y ] is also a vector
field with values in E. The subbundle E is said to be integrable if for each
point m ∈M there is a local submanifold of M containing m such that its
tangent bundle equals E restricted to this submanifold. If E is integrable,
the local integral manifolds can be extended to get, through each m ∈M ,
a maximal integral manifold, which is an immersed submanifold of M . The
collection of all maximal integral manifolds through all points of M forms
a foliation.

The Frobenius theorem states that the involutivity of E is equivalent
to the integrability of E, which in turn is equivalent to the existence of a
foliation on M whose tangent bundle equals E.

Identities for Vector Fields and Forms

1. Vector fields on M with the bracket [X,Y ] form a Lie algebra ; that
is, [X,Y ] is real bilinear, skew-symmetric, and Jacobi’s identity
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138 4.4 Stokes’ Theorem

holds:

[[X,Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] = 0.

Locally,

[X,Y ] = DY ·X −DX · Y = (X · ∇)Y − (Y · ∇)X

and on functions,

[X,Y ][f ] = X[Y [f ]]− Y [X[f ]].

2. For diffeomorphisms ϕ and ψ,

ϕ∗[X,Y ] = [ϕ∗X,ϕ∗Y ] and (ϕ ◦ ψ)∗X = ϕ∗ψ∗X.

3. The forms on a manifold comprise a real associative algebra with ∧
as multiplication. Furthermore, α∧β = (−1)klβ∧α for k and l-forms
α and β, respectively.

4. For maps ϕ and ψ,

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β and (ϕ ◦ ψ)∗α = ψ∗ϕ∗α.

5. d is a real linear map on forms, ddα = 0, and

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

for α a k-form.

6. For α a k-form and X0, . . . , Xk vector fields,

(dα)(X0, . . . , Xk) =
k∑
i=0

(−1)iXi[α(X0, . . . , X̂i, . . . , Xk)]

+
∑

0≤i<j≤k
(−1)i+jα([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

where X̂i means that Xi is omitted. Locally,

dα(x)(v0, . . . , vk) =
k∑
i=0

(−1)iDα(x) · vi(v0, . . . , v̂i, . . . , vk).

7. For a map ϕ, ϕ∗dα = dϕ∗α.

8. Poincaré Lemma. If dα = 0, then α is locally exact; that is, there
is a neighborhood U about each point on which α = dβ. The same
result holds globally on a contractible manifold.
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9. iXα is real bilinear in X, α and for h : M → R,

ihXα = hiXα = iXhα.

Also, iX iXα = 0 and

iX(α ∧ β) = iXα ∧ β + (−1)kα ∧ iXβ

for α a k-form.

10. For a diffeomorphism ϕ,

ϕ∗(iXα) = iϕ∗X(ϕ∗α);

if f : M → N is a mapping and Y is f -related to X, that is,

Tf ◦X = Y ◦ f,

then
iXf∗α = f∗iY α.

11. £Xα is real bilinear in X, α and

£X(α ∧ β) = £Xα ∧ β + α ∧£Xβ.

12. Cartan’s Magic Formula:

£Xα = diXα+ iXdα.

13. For a diffeomorphism ϕ,

ϕ∗£Xα = £ϕ∗Xϕ
∗α;

if f : M → N is a mapping and Y is f -related to X, then

£Y f
∗α = f∗£Xα.

14. (£Xα)(X1, . . . , Xk) = X[α(X1, . . . , Xk)]

−
k∑
i=0

α(X1, . . . , [X,Xi], . . . , Xk).

Locally,

(£Xα)(x) · (v1, . . . , vk) = (Dαx ·X(x))(v1, . . . , vk)

+
k∑
i=0

αx(v1, . . . ,DXx · vi, . . . , vk).
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15. The following identities hold:

(a) £fXα = f£Xα+ df ∧ iXα;
(b) £[X,Y ]α = £X£Y α−£Y £Xα;
(c) i[X,Y ]α = £X iY α− iY £Xα;
(d) £Xdα = d£Xα; and
(e) £X iXα = iX£Xα.

(f) £X(α ∧ β) = £Xα ∧ β + α ∧£Xβ

16. If M is a finite-dimensional manifold, X = X l∂/∂xl, and

α = αi1...ikdx
i1 ∧ · · · ∧ dxik ,

where i1 < · · · < ik, then the following formulas hold:

dα =
(
∂αi1...ik
∂xl

)
dxl ∧ dxi1 ∧ · · · ∧ dxik ,

iXα = X lαli2...ikdx
i2 ∧ · · · ∧ dxik ,

£Xα = X l

(
∂αi1...ik
∂xl

)
dxi1 ∧ · · · ∧ dxik

+ αli2...ik

(
∂X l

∂xi1

)
dxi1 ∧ dxi2 ∧ . . . ∧ dxik + . . . .

Exercises

¦ Exercise 4.4-1. Let Ω be a closed bounded region in R2. Use Green’s
theorem to show that the area of Ω equals the line integral

1
2

∫
∂Ω

(x dy − y dx).

¦ Exercise 4.4-2. On R2\{(0, 0)} consider the one-form

α = (x dy − y dx)/(x2 + y2).

(a) Show that this form is closed.

(b) Using the angle θ as a variable on S1, compute i∗α, where i : S1 → R2

is the standard embedding.

(c) Show that α is not exact.

¦ Exercise 4.4-3. The magnetic monopole Let B = gr/r3 be a vector
field on Euclidean three-space minus the origin where r = ‖r‖. Show that
B cannot be written as the curl of something.
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